This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325369 #4 May 02 2019 16:05:03 %S A325369 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,30,31, %T A325369 32,33,34,35,36,37,38,39,41,42,43,46,47,49,51,53,55,57,58,59,60,61,62, %U A325369 64,65,66,67,69,70,71,73,74,77,78,79,81,82,83,84,85,86 %N A325369 Numbers with no two prime exponents appearing the same number of times in the prime signature. %C A325369 The prime signature (A118914) is the multiset of exponents appearing in a number's prime factorization. %C A325369 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities appear with distinct multiplicities. The enumeration of these partitions by sum is given by A325329. %e A325369 Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins: %e A325369 12: {1,1,2} %e A325369 18: {1,2,2} %e A325369 20: {1,1,3} %e A325369 24: {1,1,1,2} %e A325369 28: {1,1,4} %e A325369 40: {1,1,1,3} %e A325369 44: {1,1,5} %e A325369 45: {2,2,3} %e A325369 48: {1,1,1,1,2} %e A325369 50: {1,3,3} %e A325369 52: {1,1,6} %e A325369 54: {1,2,2,2} %e A325369 56: {1,1,1,4} %e A325369 63: {2,2,4} %e A325369 68: {1,1,7} %e A325369 72: {1,1,1,2,2} %e A325369 75: {2,3,3} %e A325369 76: {1,1,8} %e A325369 80: {1,1,1,1,3} %e A325369 88: {1,1,1,5} %e A325369 For example, the prime indices of 1260 are {1,1,2,2,3,4}, whose multiplicities give the prime signature {1,1,2,2}, and since 1 and 2 appear the same number of times, 1260 is not in the sequence. %t A325369 Select[Range[100],UnsameQ@@Length/@Split[Sort[Last/@FactorInteger[#]]]&] %Y A325369 Cf. A056239, A098859, A112798, A118914, A130091, A317090, A319161, A325326, A325329, A325331, A325337, A325370, A325371. %K A325369 nonn %O A325369 1,2 %A A325369 _Gus Wiseman_, May 02 2019