This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325372 #7 May 02 2019 16:05:24 %S A325372 3,5,7,9,11,13,17,19,23,25,27,29,31,37,41,43,47,49,53,59,61,67,71,73, %T A325372 79,81,83,89,97,100,101,103,107,109,113,121,125,127,131,137,139,149, %U A325372 151,157,163,167,169,173,179,181,191,193,196,197,199,211,223,225,227 %N A325372 Totally abnormal numbers. Heinz numbers of totally abnormal integer partitions. %C A325372 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number n is totally abnormal iff (1) the prime indices of n do not cover an initial interval of positive integers, and either (2a) n is prime, or (2b) the prime exponents (or prime signature) of n forms a totally abnormal integer partition, or, equivalently to (2b), A181819(n) is totally abnormal. %C A325372 The enumeration of totally abnormal integer partitions by sum is given by A325332. %e A325372 The sequence of terms together with their prime indices are the following. See also the example at A325373. %e A325372 3: {2} %e A325372 5: {3} %e A325372 7: {4} %e A325372 9: {2,2} %e A325372 11: {5} %e A325372 13: {6} %e A325372 17: {7} %e A325372 19: {8} %e A325372 23: {9} %e A325372 25: {3,3} %e A325372 27: {2,2,2} %e A325372 29: {10} %e A325372 31: {11} %e A325372 37: {12} %e A325372 41: {13} %e A325372 43: {14} %e A325372 47: {15} %e A325372 49: {4,4} %e A325372 53: {16} %e A325372 59: {17} %t A325372 normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]]; %t A325372 totabnQ[n_]:=And[!normQ[n],PrimeQ[n]||totabnQ[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]]; %t A325372 Select[Range[100],totabnQ] %Y A325372 Cf. A055932, A056239, A112798, A181819, A317089, A317090, A317246 (supernormal), A317492 (fully normal), A317589 (uniformly normal), A319151, A325332, A325373. %K A325372 nonn %O A325372 1,1 %A A325372 _Gus Wiseman_, May 02 2019