A325373 Composite totally abnormal numbers. Heinz numbers of non-singleton totally abnormal integer partitions.
9, 25, 27, 49, 81, 100, 121, 125, 169, 196, 225, 243, 289, 343, 361, 441, 484, 529, 625, 676, 729, 841, 961, 1000, 1089, 1156, 1225, 1331, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2187, 2197, 2209, 2401, 2601, 2744, 2809, 3025, 3125, 3249, 3364, 3375, 3481
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 9: {2,2} 25: {3,3} 27: {2,2,2} 49: {4,4} 81: {2,2,2,2} 100: {1,1,3,3} 121: {5,5} 125: {3,3,3} 169: {6,6} 196: {1,1,4,4} 225: {2,2,3,3} 243: {2,2,2,2,2} 289: {7,7} 343: {4,4,4} 361: {8,8} 441: {2,2,4,4} 484: {1,1,5,5} 529: {9,9} 625: {3,3,3,3} 676: {1,1,6,6}
Crossrefs
Programs
-
Mathematica
normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]]; totabnQ[n_]:=And[!normQ[n],PrimeQ[n]||totabnQ[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]]; Select[Range[10000],!PrimeQ[#]&&totabnQ[#]&]
Comments