cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325374 Numbers with adjusted frequency depth 3 whose prime indices cover an initial interval of positive integers.

Original entry on oeis.org

6, 30, 36, 210, 216, 900, 1296, 2310, 7776, 27000, 30030, 44100, 46656, 279936, 510510, 810000, 1679616, 5336100, 9261000, 9699690, 10077696, 24300000, 60466176, 223092870, 362797056, 729000000, 901800900, 1944810000, 2176782336, 6469693230, 12326391000
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The adjusted frequency depth (A323014) of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with adjusted frequency depth 3 whose parts cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325334.
The terms are the primorial numbers (A002110) above 2 and all their powers. - Amiram Eldar, May 08 2019

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}
     30: {1,2,3}
     36: {1,1,2,2}
    210: {1,2,3,4}
    216: {1,1,1,2,2,2}
    900: {1,1,2,2,3,3}
   1296: {1,1,1,1,2,2,2,2}
   2310: {1,2,3,4,5}
   7776: {1,1,1,1,1,2,2,2,2,2}
  27000: {1,1,1,2,2,2,3,3,3}
  30030: {1,2,3,4,5,6}
  44100: {1,1,2,2,3,3,4,4}
  46656: {1,1,1,1,1,1,2,2,2,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#1]&,n,!PrimeQ[#1]&]]];
    Select[Range[10000],normQ[#]&&fdadj[#]==3&]