This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325378 #6 Apr 22 2019 13:50:32 %S A325378 30,70,90,246,150,266,190,210,678,342,270,310,654,574,370,570,450,738, %T A325378 930,490,510,722,550,570,798,1582,690,1026,750,2034,790,1230,1626, %U A325378 1178,870,1526,910,970,990,2046,1558,1406,1722,1962,1150,1170,1210,4062,1710,1290,3390,1350,1862,1390,1938,1410,2214,1470,3030 %N A325378 a(n) = A162296(A228058(n)) - A048250(A228058(n)). %H A325378 Antti Karttunen, <a href="/A325378/b325378.txt">Table of n, a(n) for n = 1..25000</a> %F A325378 a(n) = A162296(A228058(n)) - A048250(A228058(n)). %F A325378 a(n) = A325319(n) + A325320(n). %o A325378 (PARI) %o A325378 A048250(n) = factorback(apply(p -> p+1,factor(n)[,1])); %o A325378 A162296(n) = sumdiv(n, d, d*(1-issquarefree(d))); %o A325378 isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y)); %o A325378 k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A162296(n) - A048250(n),", "))); %Y A325378 Cf. A048250, A162296, A228058, A325319, A325320, A325379. %K A325378 nonn %O A325378 1,1 %A A325378 _Antti Karttunen_, Apr 22 2019