This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325388 #6 May 03 2019 08:35:34 %S A325388 1,2,3,5,7,10,11,13,14,15,17,19,22,23,26,29,31,33,34,35,37,38,39,41, %T A325388 43,46,47,51,53,55,57,58,59,61,62,67,69,71,73,74,77,79,82,83,85,86,87, %U A325388 89,91,93,94,95,97,101,103,106,107,109,111,113,115,118,119,122 %N A325388 Heinz numbers of strict integer partitions with distinct differences (with the last part taken to be 0). %C A325388 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325388 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1). %C A325388 The enumeration of these partitions by sum is given by A320348. %H A325388 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325388 The sequence of terms together with their prime indices begins: %e A325388 1: {} %e A325388 2: {1} %e A325388 3: {2} %e A325388 5: {3} %e A325388 7: {4} %e A325388 10: {1,3} %e A325388 11: {5} %e A325388 13: {6} %e A325388 14: {1,4} %e A325388 15: {2,3} %e A325388 17: {7} %e A325388 19: {8} %e A325388 22: {1,5} %e A325388 23: {9} %e A325388 26: {1,6} %e A325388 29: {10} %e A325388 31: {11} %e A325388 33: {2,5} %e A325388 34: {1,7} %e A325388 35: {3,4} %t A325388 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325388 Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Differences[Append[primeptn[#],0]]&] %Y A325388 A subsequence of A005117. %Y A325388 Cf. A056239, A112798, A320348, A325324, A325327, A325362, A325364, A325366, A325367, A325368, A325390, A325405, A325460, A325461, A325467. %K A325388 nonn %O A325388 1,2 %A A325388 _Gus Wiseman_, May 02 2019