This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325389 #4 May 03 2019 08:35:43 %S A325389 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,24,26,28,29, %T A325389 30,31,32,33,34,37,38,39,40,41,42,43,44,46,47,48,51,52,53,55,56,57,58, %U A325389 59,60,61,62,64,65,66,67,68,69,71,73,74,76,78,79,80,82,83 %N A325389 Heinz numbers of integer partitions whose augmented differences are weakly decreasing. %C A325389 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325389 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A325389 The enumeration of these partitions by sum is given by A325350. %H A325389 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325389 The sequence of terms together with their prime indices begins: %e A325389 1: {} %e A325389 2: {1} %e A325389 3: {2} %e A325389 4: {1,1} %e A325389 5: {3} %e A325389 6: {1,2} %e A325389 7: {4} %e A325389 8: {1,1,1} %e A325389 10: {1,3} %e A325389 11: {5} %e A325389 12: {1,1,2} %e A325389 13: {6} %e A325389 14: {1,4} %e A325389 15: {2,3} %e A325389 16: {1,1,1,1} %e A325389 17: {7} %e A325389 19: {8} %e A325389 20: {1,1,3} %e A325389 21: {2,4} %e A325389 22: {1,5} %t A325389 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325389 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A325389 Select[Range[100],GreaterEqual@@aug[primeptn[#]]&] %Y A325389 Cf. A056239, A093641, A112798, A320466, A320509, A325350, A325351, A325361, A325364, A325366, A325394, A325395, A325396, A325397. %K A325389 nonn %O A325389 1,2 %A A325389 _Gus Wiseman_, May 02 2019