cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325389 Heinz numbers of integer partitions whose augmented differences are weakly decreasing.

This page as a plain text file.
%I A325389 #4 May 03 2019 08:35:43
%S A325389 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,24,26,28,29,
%T A325389 30,31,32,33,34,37,38,39,40,41,42,43,44,46,47,48,51,52,53,55,56,57,58,
%U A325389 59,60,61,62,64,65,66,67,68,69,71,73,74,76,78,79,80,82,83
%N A325389 Heinz numbers of integer partitions whose augmented differences are weakly decreasing.
%C A325389 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325389 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A325389 The enumeration of these partitions by sum is given by A325350.
%H A325389 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325389 The sequence of terms together with their prime indices begins:
%e A325389    1: {}
%e A325389    2: {1}
%e A325389    3: {2}
%e A325389    4: {1,1}
%e A325389    5: {3}
%e A325389    6: {1,2}
%e A325389    7: {4}
%e A325389    8: {1,1,1}
%e A325389   10: {1,3}
%e A325389   11: {5}
%e A325389   12: {1,1,2}
%e A325389   13: {6}
%e A325389   14: {1,4}
%e A325389   15: {2,3}
%e A325389   16: {1,1,1,1}
%e A325389   17: {7}
%e A325389   19: {8}
%e A325389   20: {1,1,3}
%e A325389   21: {2,4}
%e A325389   22: {1,5}
%t A325389 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325389 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A325389 Select[Range[100],GreaterEqual@@aug[primeptn[#]]&]
%Y A325389 Cf. A056239, A093641, A112798, A320466, A320509, A325350, A325351, A325361, A325364, A325366, A325394, A325395, A325396, A325397.
%K A325389 nonn
%O A325389 1,2
%A A325389 _Gus Wiseman_, May 02 2019