cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325394 Heinz numbers of integer partitions whose augmented differences are weakly increasing.

This page as a plain text file.
%I A325394 #5 May 03 2019 08:36:57
%S A325394 1,2,3,4,5,7,8,9,11,13,15,16,17,19,23,25,27,29,31,32,35,37,41,43,47,
%T A325394 49,53,55,59,61,64,67,71,73,75,77,79,81,83,89,91,97,101,103,105,107,
%U A325394 109,113,119,121,125,127,128,131,137,139,143,149,151,157,163,167
%N A325394 Heinz numbers of integer partitions whose augmented differences are weakly increasing.
%C A325394 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325394 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A325394 The enumeration of these partitions by sum is given by A325356.
%H A325394 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325394 The sequence of terms together with their prime indices begins:
%e A325394     1: {}
%e A325394     2: {1}
%e A325394     3: {2}
%e A325394     4: {1,1}
%e A325394     5: {3}
%e A325394     7: {4}
%e A325394     8: {1,1,1}
%e A325394     9: {2,2}
%e A325394    11: {5}
%e A325394    13: {6}
%e A325394    15: {2,3}
%e A325394    16: {1,1,1,1}
%e A325394    17: {7}
%e A325394    19: {8}
%e A325394    23: {9}
%e A325394    25: {3,3}
%e A325394    27: {2,2,2}
%e A325394    29: {10}
%e A325394    31: {11}
%e A325394    32: {1,1,1,1,1}
%t A325394 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325394 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A325394 Select[Range[100],OrderedQ[aug[primeptn[#]]]&]
%Y A325394 Cf. A056239, A093641, A112798, A240026, A325351, A325356, A325360, A325362, A325366, A325389, A325395, A325396, A325400.
%K A325394 nonn
%O A325394 1,2
%A A325394 _Gus Wiseman_, May 02 2019