This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325394 #5 May 03 2019 08:36:57 %S A325394 1,2,3,4,5,7,8,9,11,13,15,16,17,19,23,25,27,29,31,32,35,37,41,43,47, %T A325394 49,53,55,59,61,64,67,71,73,75,77,79,81,83,89,91,97,101,103,105,107, %U A325394 109,113,119,121,125,127,128,131,137,139,143,149,151,157,163,167 %N A325394 Heinz numbers of integer partitions whose augmented differences are weakly increasing. %C A325394 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325394 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A325394 The enumeration of these partitions by sum is given by A325356. %H A325394 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325394 The sequence of terms together with their prime indices begins: %e A325394 1: {} %e A325394 2: {1} %e A325394 3: {2} %e A325394 4: {1,1} %e A325394 5: {3} %e A325394 7: {4} %e A325394 8: {1,1,1} %e A325394 9: {2,2} %e A325394 11: {5} %e A325394 13: {6} %e A325394 15: {2,3} %e A325394 16: {1,1,1,1} %e A325394 17: {7} %e A325394 19: {8} %e A325394 23: {9} %e A325394 25: {3,3} %e A325394 27: {2,2,2} %e A325394 29: {10} %e A325394 31: {11} %e A325394 32: {1,1,1,1,1} %t A325394 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325394 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A325394 Select[Range[100],OrderedQ[aug[primeptn[#]]]&] %Y A325394 Cf. A056239, A093641, A112798, A240026, A325351, A325356, A325360, A325362, A325366, A325389, A325395, A325396, A325400. %K A325394 nonn %O A325394 1,2 %A A325394 _Gus Wiseman_, May 02 2019