This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325395 #4 May 03 2019 08:37:05 %S A325395 1,2,3,5,7,9,11,13,17,19,23,25,29,31,35,37,41,43,47,49,53,59,61,67,71, %T A325395 73,77,79,83,89,91,97,101,103,107,109,113,121,127,131,137,139,143,149, %U A325395 151,157,163,167,169,173,179,181,187,191,193,197,199,209,211,221 %N A325395 Heinz numbers of integer partitions whose augmented differences are strictly increasing. %C A325395 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325395 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A325395 The enumeration of these partitions by sum is given by A325357. %H A325395 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325395 The sequence of terms together with their prime indices begins: %e A325395 1: {} %e A325395 2: {1} %e A325395 3: {2} %e A325395 5: {3} %e A325395 7: {4} %e A325395 9: {2,2} %e A325395 11: {5} %e A325395 13: {6} %e A325395 17: {7} %e A325395 19: {8} %e A325395 23: {9} %e A325395 25: {3,3} %e A325395 29: {10} %e A325395 31: {11} %e A325395 35: {3,4} %e A325395 37: {12} %e A325395 41: {13} %e A325395 43: {14} %e A325395 47: {15} %e A325395 49: {4,4} %t A325395 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325395 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A325395 Select[Range[100],Less@@aug[primeptn[#]]&] %Y A325395 Cf. A056239, A093641, A112798, A240027, A325351, A325357, A325366, A325389, A325394, A325396, A325398, A325456, A325460. %K A325395 nonn %O A325395 1,2 %A A325395 _Gus Wiseman_, May 02 2019