cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325395 Heinz numbers of integer partitions whose augmented differences are strictly increasing.

This page as a plain text file.
%I A325395 #4 May 03 2019 08:37:05
%S A325395 1,2,3,5,7,9,11,13,17,19,23,25,29,31,35,37,41,43,47,49,53,59,61,67,71,
%T A325395 73,77,79,83,89,91,97,101,103,107,109,113,121,127,131,137,139,143,149,
%U A325395 151,157,163,167,169,173,179,181,187,191,193,197,199,209,211,221
%N A325395 Heinz numbers of integer partitions whose augmented differences are strictly increasing.
%C A325395 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325395 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A325395 The enumeration of these partitions by sum is given by A325357.
%H A325395 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325395 The sequence of terms together with their prime indices begins:
%e A325395     1: {}
%e A325395     2: {1}
%e A325395     3: {2}
%e A325395     5: {3}
%e A325395     7: {4}
%e A325395     9: {2,2}
%e A325395    11: {5}
%e A325395    13: {6}
%e A325395    17: {7}
%e A325395    19: {8}
%e A325395    23: {9}
%e A325395    25: {3,3}
%e A325395    29: {10}
%e A325395    31: {11}
%e A325395    35: {3,4}
%e A325395    37: {12}
%e A325395    41: {13}
%e A325395    43: {14}
%e A325395    47: {15}
%e A325395    49: {4,4}
%t A325395 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325395 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A325395 Select[Range[100],Less@@aug[primeptn[#]]&]
%Y A325395 Cf. A056239, A093641, A112798, A240027, A325351, A325357, A325366, A325389, A325394, A325396, A325398, A325456, A325460.
%K A325395 nonn
%O A325395 1,2
%A A325395 _Gus Wiseman_, May 02 2019