cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325396 Heinz numbers of integer partitions whose augmented differences are strictly decreasing.

This page as a plain text file.
%I A325396 #4 May 03 2019 08:37:13
%S A325396 1,2,3,5,6,7,10,11,13,14,17,19,21,22,23,26,29,31,33,34,37,38,39,41,42,
%T A325396 43,46,47,51,53,57,58,59,61,62,65,66,67,69,71,73,74,78,79,82,83,85,86,
%U A325396 87,89,93,94,95,97,101,102,103,106,107,109,111,113,114,115
%N A325396 Heinz numbers of integer partitions whose augmented differences are strictly decreasing.
%C A325396 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325396 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A325396 The enumeration of these partitions by sum is given by A325358.
%H A325396 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325396 The sequence of terms together with their prime indices begins:
%e A325396     1: {}
%e A325396     2: {1}
%e A325396     3: {2}
%e A325396     5: {3}
%e A325396     6: {1,2}
%e A325396     7: {4}
%e A325396    10: {1,3}
%e A325396    11: {5}
%e A325396    13: {6}
%e A325396    14: {1,4}
%e A325396    17: {7}
%e A325396    19: {8}
%e A325396    21: {2,4}
%e A325396    22: {1,5}
%e A325396    23: {9}
%e A325396    26: {1,6}
%e A325396    29: {10}
%e A325396    31: {11}
%e A325396    33: {2,5}
%e A325396    34: {1,7}
%t A325396 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325396 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A325396 Select[Range[100],Greater@@aug[primeptn[#]]&]
%Y A325396 A subsequence of A005117.
%Y A325396 Cf. A056239, A093641, A112798, A320466, A325351, A325358, A325366, A325389, A325393, A325394, A325395, A325457.
%K A325396 nonn
%O A325396 1,2
%A A325396 _Gus Wiseman_, May 02 2019