This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325396 #4 May 03 2019 08:37:13 %S A325396 1,2,3,5,6,7,10,11,13,14,17,19,21,22,23,26,29,31,33,34,37,38,39,41,42, %T A325396 43,46,47,51,53,57,58,59,61,62,65,66,67,69,71,73,74,78,79,82,83,85,86, %U A325396 87,89,93,94,95,97,101,102,103,106,107,109,111,113,114,115 %N A325396 Heinz numbers of integer partitions whose augmented differences are strictly decreasing. %C A325396 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325396 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A325396 The enumeration of these partitions by sum is given by A325358. %H A325396 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325396 The sequence of terms together with their prime indices begins: %e A325396 1: {} %e A325396 2: {1} %e A325396 3: {2} %e A325396 5: {3} %e A325396 6: {1,2} %e A325396 7: {4} %e A325396 10: {1,3} %e A325396 11: {5} %e A325396 13: {6} %e A325396 14: {1,4} %e A325396 17: {7} %e A325396 19: {8} %e A325396 21: {2,4} %e A325396 22: {1,5} %e A325396 23: {9} %e A325396 26: {1,6} %e A325396 29: {10} %e A325396 31: {11} %e A325396 33: {2,5} %e A325396 34: {1,7} %t A325396 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325396 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A325396 Select[Range[100],Greater@@aug[primeptn[#]]&] %Y A325396 A subsequence of A005117. %Y A325396 Cf. A056239, A093641, A112798, A320466, A325351, A325358, A325366, A325389, A325393, A325394, A325395, A325457. %K A325396 nonn %O A325396 1,2 %A A325396 _Gus Wiseman_, May 02 2019