This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325400 #4 May 03 2019 08:37:46 %S A325400 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27, %T A325400 28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52, %U A325400 53,55,56,57,58,59,61,62,63,64,65,66,67,68,69,71,73,74 %N A325400 Heinz numbers of reversed integer partitions whose k-th differences are weakly increasing for all k >= 0. %C A325400 First differs from A109427 in lacking 54. %C A325400 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325400 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). %C A325400 The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences. %C A325400 The enumeration of these partitions by sum is given by A325354. %H A325400 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325400 Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins: %e A325400 18: {1,2,2} %e A325400 36: {1,1,2,2} %e A325400 50: {1,3,3} %e A325400 54: {1,2,2,2} %e A325400 60: {1,1,2,3} %e A325400 70: {1,3,4} %e A325400 72: {1,1,1,2,2} %e A325400 75: {2,3,3} %e A325400 90: {1,2,2,3} %e A325400 98: {1,4,4} %e A325400 100: {1,1,3,3} %e A325400 108: {1,1,2,2,2} %e A325400 120: {1,1,1,2,3} %e A325400 126: {1,2,2,4} %e A325400 140: {1,1,3,4} %e A325400 144: {1,1,1,1,2,2} %e A325400 147: {2,4,4} %e A325400 150: {1,2,3,3} %e A325400 154: {1,4,5} %e A325400 162: {1,2,2,2,2} %t A325400 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325400 Select[Range[100],And@@Table[Greater@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&] %Y A325400 Cf. A007294, A056239, A112798, A240026, A325354, A325360, A325362, A325394, A325397, A325398, A325399, A325405, A325467. %K A325400 nonn %O A325400 1,2 %A A325400 _Gus Wiseman_, May 02 2019