cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325404 Number of reversed integer partitions y of n such that the k-th differences of y are distinct for all k >= 0 and are disjoint from the i-th differences for i != k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 5, 7, 5, 11, 12, 11, 12, 20, 15, 24, 22, 27, 28, 37, 28, 45, 43, 48, 50, 66, 58, 79, 72, 84, 87, 112, 106, 135, 128, 158, 147, 186, 180, 218, 220, 265, 246, 304, 303, 354, 340, 412, 418, 471, 463, 538, 543, 642, 600, 711, 755
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325405.

Examples

			The a(1) = 1 through a(12) = 5 reversed partitions (A = 10, B = 11, C = 12):
  (1)  (2)  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)   (B)    (C)
                 (13)  (14)  (15)  (16)  (17)  (18)  (19)  (29)   (39)
                       (23)        (25)  (26)  (27)  (28)  (38)   (57)
                                   (34)  (35)  (45)  (37)  (47)   (1B)
                                                     (46)  (56)   (2A)
                                                           (1A)
                                                           (146)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],UnsameQ@@Join@@Table[Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]