This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325405 #7 Jun 07 2019 16:33:56 %S A325405 1,2,3,5,7,10,11,13,14,15,17,19,22,23,26,29,31,33,34,35,37,38,39,41, %T A325405 43,46,47,51,53,55,57,58,59,61,62,67,69,71,73,74,77,79,82,83,85,86,87, %U A325405 89,91,93,94,95,97,101,103,106,107,109,111,113,115,118,119,122 %N A325405 Heinz numbers of integer partitions y such that the k-th differences of y are distinct for all k >= 0 and are disjoint from the i-th differences for i != k. %C A325405 First differs from A325388 in lacking 130. %C A325405 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325405 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). %C A325405 The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences. %C A325405 The enumeration of these partitions by sum is given by A325404. %H A325405 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325405 The sequence of terms together with their prime indices begins: %e A325405 1: {} %e A325405 2: {1} %e A325405 3: {2} %e A325405 5: {3} %e A325405 7: {4} %e A325405 10: {1,3} %e A325405 11: {5} %e A325405 13: {6} %e A325405 14: {1,4} %e A325405 15: {2,3} %e A325405 17: {7} %e A325405 19: {8} %e A325405 22: {1,5} %e A325405 23: {9} %e A325405 26: {1,6} %e A325405 29: {10} %e A325405 31: {11} %e A325405 33: {2,5} %e A325405 34: {1,7} %e A325405 35: {3,4} %t A325405 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325405 Select[Range[100],UnsameQ@@Join@@Table[Differences[primeMS[#],k],{k,0,PrimeOmega[#]}]&] %Y A325405 A subsequence of A005117. %Y A325405 Cf. A056239, A112798, A279945, A325325, A325366, A325367, A325368, A325397, A325398, A325399, A325400, A325404, A325406, A325467. %K A325405 nonn %O A325405 1,2 %A A325405 _Gus Wiseman_, May 02 2019