cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325407 Nonprime Heinz numbers of multiples of triangular partitions, or of finite arithmetic progressions with offset 0.

This page as a plain text file.
%I A325407 #4 May 03 2019 21:25:43
%S A325407 1,6,21,30,65,133,210,273,319,481,731,1007,1403,1495,2059,2310,2449,
%T A325407 3293,4141,4601,4921,5187,5311,6943,8201,9211,10921,12283,13213,14993,
%U A325407 15247,16517,19847,22213,24139,25853,28141,29341,29539,30030,31753,37211,40741
%N A325407 Nonprime Heinz numbers of multiples of triangular partitions, or of finite arithmetic progressions with offset 0.
%C A325407 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers of the form Product_{k = 1...b} prime(k * c) for some b > 1 and c > 0.
%e A325407 The sequence of terms together with their prime indices begins:
%e A325407       1: {}
%e A325407       6: {1,2}
%e A325407      21: {2,4}
%e A325407      30: {1,2,3}
%e A325407      65: {3,6}
%e A325407     133: {4,8}
%e A325407     210: {1,2,3,4}
%e A325407     273: {2,4,6}
%e A325407     319: {5,10}
%e A325407     481: {6,12}
%e A325407     731: {7,14}
%e A325407    1007: {8,16}
%e A325407    1403: {9,18}
%e A325407    1495: {3,6,9}
%e A325407    2059: {10,20}
%e A325407    2310: {1,2,3,4,5}
%e A325407    2449: {11,22}
%e A325407    3293: {12,24}
%e A325407    4141: {13,26}
%e A325407    4601: {14,28}
%t A325407 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325407 Select[Range[10000],!PrimeQ[#]&&SameQ@@Differences[Prepend[primeMS[#],0]]&]
%Y A325407 Cf. A007294, A007862, A049988, A056239, A112798, A325327, A325328, A325355, A325359, A325367, A325390.
%K A325407 nonn
%O A325407 1,2
%A A325407 _Gus Wiseman_, May 03 2019