This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325407 #4 May 03 2019 21:25:43 %S A325407 1,6,21,30,65,133,210,273,319,481,731,1007,1403,1495,2059,2310,2449, %T A325407 3293,4141,4601,4921,5187,5311,6943,8201,9211,10921,12283,13213,14993, %U A325407 15247,16517,19847,22213,24139,25853,28141,29341,29539,30030,31753,37211,40741 %N A325407 Nonprime Heinz numbers of multiples of triangular partitions, or of finite arithmetic progressions with offset 0. %C A325407 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers of the form Product_{k = 1...b} prime(k * c) for some b > 1 and c > 0. %e A325407 The sequence of terms together with their prime indices begins: %e A325407 1: {} %e A325407 6: {1,2} %e A325407 21: {2,4} %e A325407 30: {1,2,3} %e A325407 65: {3,6} %e A325407 133: {4,8} %e A325407 210: {1,2,3,4} %e A325407 273: {2,4,6} %e A325407 319: {5,10} %e A325407 481: {6,12} %e A325407 731: {7,14} %e A325407 1007: {8,16} %e A325407 1403: {9,18} %e A325407 1495: {3,6,9} %e A325407 2059: {10,20} %e A325407 2310: {1,2,3,4,5} %e A325407 2449: {11,22} %e A325407 3293: {12,24} %e A325407 4141: {13,26} %e A325407 4601: {14,28} %t A325407 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325407 Select[Range[10000],!PrimeQ[#]&&SameQ@@Differences[Prepend[primeMS[#],0]]&] %Y A325407 Cf. A007294, A007862, A049988, A056239, A112798, A325327, A325328, A325355, A325359, A325367, A325390. %K A325407 nonn %O A325407 1,2 %A A325407 _Gus Wiseman_, May 03 2019