cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325411 Numbers whose omega-sequence has repeated parts.

This page as a plain text file.
%I A325411 #12 Aug 22 2019 09:55:07
%S A325411 6,10,12,14,15,18,20,21,22,24,26,28,30,33,34,35,38,39,40,42,44,45,46,
%T A325411 48,50,51,52,54,55,56,57,58,60,62,63,65,66,68,69,70,72,74,75,76,77,78,
%U A325411 80,82,84,85,86,87,88,90,91,92,93,94,95,96,98,99,102,104,105
%N A325411 Numbers whose omega-sequence has repeated parts.
%C A325411 First differs from A323304 in lacking 216. First differs from A106543 in having 144.
%C A325411 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose omega-sequence has repeated parts. The enumeration of these partitions by sum is given by A325285.
%C A325411 We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), which has repeated parts, so 180 is in the sequence.
%e A325411 The sequence of terms together with their omega-sequences begins:
%e A325411    6: 2 2 1       51: 2 2 1         86: 2 2 1        119: 2 2 1
%e A325411   10: 2 2 1       52: 3 2 2 1       87: 2 2 1        120: 5 3 2 2 1
%e A325411   12: 3 2 2 1     54: 4 2 2 1       88: 4 2 2 1      122: 2 2 1
%e A325411   14: 2 2 1       55: 2 2 1         90: 4 3 2 2 1    123: 2 2 1
%e A325411   15: 2 2 1       56: 4 2 2 1       91: 2 2 1        124: 3 2 2 1
%e A325411   18: 3 2 2 1     57: 2 2 1         92: 3 2 2 1      126: 4 3 2 2 1
%e A325411   20: 3 2 2 1     58: 2 2 1         93: 2 2 1        129: 2 2 1
%e A325411   21: 2 2 1       60: 4 3 2 2 1     94: 2 2 1        130: 3 3 1
%e A325411   22: 2 2 1       62: 2 2 1         95: 2 2 1        132: 4 3 2 2 1
%e A325411   24: 4 2 2 1     63: 3 2 2 1       96: 6 2 2 1      133: 2 2 1
%e A325411   26: 2 2 1       65: 2 2 1         98: 3 2 2 1      134: 2 2 1
%e A325411   28: 3 2 2 1     66: 3 3 1         99: 3 2 2 1      135: 4 2 2 1
%e A325411   30: 3 3 1       68: 3 2 2 1      102: 3 3 1        136: 4 2 2 1
%e A325411   33: 2 2 1       69: 2 2 1        104: 4 2 2 1      138: 3 3 1
%e A325411   34: 2 2 1       70: 3 3 1        105: 3 3 1        140: 4 3 2 2 1
%e A325411   35: 2 2 1       72: 5 2 2 1      106: 2 2 1        141: 2 2 1
%e A325411   38: 2 2 1       74: 2 2 1        108: 5 2 2 1      142: 2 2 1
%e A325411   39: 2 2 1       75: 3 2 2 1      110: 3 3 1        143: 2 2 1
%e A325411   40: 4 2 2 1     76: 3 2 2 1      111: 2 2 1        144: 6 2 2 1
%e A325411   42: 3 3 1       77: 2 2 1        112: 5 2 2 1      145: 2 2 1
%e A325411   44: 3 2 2 1     78: 3 3 1        114: 3 3 1        146: 2 2 1
%e A325411   45: 3 2 2 1     80: 5 2 2 1      115: 2 2 1        147: 3 2 2 1
%e A325411   46: 2 2 1       82: 2 2 1        116: 3 2 2 1      148: 3 2 2 1
%e A325411   48: 5 2 2 1     84: 4 3 2 2 1    117: 3 2 2 1      150: 4 3 2 2 1
%e A325411   50: 3 2 2 1     85: 2 2 1        118: 2 2 1        152: 4 2 2 1
%t A325411 omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
%t A325411 Select[Range[100],!UnsameQ@@omseq[#]&]
%Y A325411 Positions of nonsquarefree numbers in A325248.
%Y A325411 Cf. A056239, A112798, A118914, A181819, A323023, A325247, A325249, A325250, A325251, A325277, A325285.
%Y A325411 Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).
%K A325411 nonn
%O A325411 1,1
%A A325411 _Gus Wiseman_, Apr 24 2019