cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325414 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with omega-sequence summing to n.

This page as a plain text file.
%I A325414 #7 Apr 25 2019 13:30:51
%S A325414 1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0,1,0,2,0,0,1,0,1,0,0,0,2,1,0,2,1,0,1,
%T A325414 0,1,1,2,0,3,1,1,1,0,1,0,0,0,3,0,1,4,2,2,1,1,0,1,0,1,0,4,0,3,3,2,2,2,
%U A325414 3,1,0,1,0,0,1,4,0,3,3,3,4,1,6,3,1,0,1
%N A325414 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with omega-sequence summing to n.
%C A325414 The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13, so (32211) is counted under T(9,13).
%e A325414 Triangle begins:
%e A325414   1
%e A325414   0 1
%e A325414   0 1 0 1
%e A325414   0 1 0 0 1 1
%e A325414   0 1 0 1 0 2 0 0 1
%e A325414   0 1 0 0 0 2 1 0 2 1
%e A325414   0 1 0 1 1 2 0 3 1 1 1
%e A325414   0 1 0 0 0 3 0 1 4 2 2 1 1
%e A325414   0 1 0 1 0 4 0 3 3 2 2 2 3 1
%e A325414   0 1 0 0 1 4 0 3 3 3 4 1 6 3 1
%e A325414   0 1 0 1 0 4 1 6 4 4 1 4 5 8 2 1
%e A325414 Row n = 9 counts the following partitions:
%e A325414   9  333  54  432  441  3222    22221      411111  3321     32211     321111
%e A325414           63  531  522  6111    33111              4221     42111
%e A325414           72  621  711  222111  51111              4311     21111111
%e A325414           81                    111111111          5211
%e A325414                                                    2211111
%e A325414                                                    3111111
%t A325414 omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
%t A325414 Table[Length[Select[IntegerPartitions[n],Total[omseq[#]]==k&]],{n,0,10},{k,0,Max[Total/@omseq/@IntegerPartitions[n]]}]
%Y A325414 Row sums are A000041.
%Y A325414 Row lengths are A325413(n) + 1 (because k starts at 0).
%Y A325414 Number of nonzero terms in row n is A325415(n).
%Y A325414 Cf. A181819, A225486, A323014, A323023, A325248, A325249, A325277, A325412, A325415, A325416.
%Y A325414 Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).
%K A325414 nonn,tabf
%O A325414 0,19
%A A325414 _Gus Wiseman_, Apr 24 2019