This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325415 #5 Apr 25 2019 13:30:57 %S A325415 1,1,2,3,4,5,8,8,10,11,13,12,15,14,16,18,18,18,21,20,23,23,24,24,27, %T A325415 27,28,29,30,30,34,32,34,35,36,37,39,38,40,41,43,42,45,44,46,48,48,48, %U A325415 51,50,53,53,54,54,57,57,58,59,60,60,64 %N A325415 Number of distinct sums of omega-sequences of integer partitions of n. %C A325415 The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13. %e A325415 The partitions of 9 organized by sum of omega sequence (first column) are: %e A325415 1: (9) %e A325415 4: (333) %e A325415 5: (81) (72) (63) (54) %e A325415 7: (621) (531) (432) %e A325415 8: (711) (522) (441) %e A325415 9: (6111) (3222) (222111) %e A325415 10: (51111) (33111) (22221) (111111111) %e A325415 11: (411111) %e A325415 12: (5211) (4311) (4221) (3321) (3111111) (2211111) %e A325415 13: (42111) (32211) (21111111) %e A325415 14: (321111) %e A325415 There are a total of 11 distinct sums {1,4,5,7,8,9,10,11,12,13,14}, so a(9) = 11. %t A325415 omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]; %t A325415 Table[Length[Union[Total/@omseq/@IntegerPartitions[n]]],{n,0,30}] %Y A325415 Number of nonzero terms in row n of A325414. %Y A325415 Cf. A181819, A225486, A323014, A323023, A325238, A325248, A325249, A325277, A325412, A325413, A325416. %Y A325415 Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum). %K A325415 nonn %O A325415 0,3 %A A325415 _Gus Wiseman_, Apr 24 2019