This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325416 #6 Apr 25 2019 13:31:03 %S A325416 1,2,0,4,8,6,32,30,12,24,48,96,60,120,240,480,960,1920,3840,2520,5040, %T A325416 10080,20160,40320,80640 %N A325416 Least k such that the omega-sequence of k sums to n, and 0 if none exists. %C A325416 We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1) with sum 13. %e A325416 The sequence of terms together with their omega-sequences (n = 2 term not shown) begins: %e A325416 1: %e A325416 2: 1 %e A325416 4: 2 1 %e A325416 8: 3 1 %e A325416 6: 2 2 1 %e A325416 32: 5 1 %e A325416 30: 3 3 1 %e A325416 12: 3 2 2 1 %e A325416 24: 4 2 2 1 %e A325416 48: 5 2 2 1 %e A325416 96: 6 2 2 1 %e A325416 60: 4 3 2 2 1 %e A325416 120: 5 3 2 2 1 %e A325416 240: 6 3 2 2 1 %e A325416 480: 7 3 2 2 1 %e A325416 960: 8 3 2 2 1 %e A325416 1920: 9 3 2 2 1 %e A325416 3840: 10 3 2 2 1 %e A325416 2520: 7 4 3 2 2 1 %e A325416 5040: 8 4 3 2 2 1 %t A325416 omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]]; %t A325416 da=Table[Total[omseq[n]],{n,10000}]; %t A325416 Table[If[!MemberQ[da,k],0,Position[da,k][[1,1]]],{k,0,Max@@da}] %Y A325416 Cf. A056239, A181819, A181821, A304465, A307734, A323023, A325238, A325277, A325280, A325413, A325415. %Y A325416 Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum). %K A325416 nonn %O A325416 0,2 %A A325416 _Gus Wiseman_, Apr 25 2019