This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325424 #30 Feb 16 2025 08:33:58 %S A325424 2,3,8,10,12,14,15,18,21,22,26,27,32,33,34,38,39,40,46,48,50,51,56,57, %T A325424 58,60,62,69,70,72,74,75,82,84,86,87,88,90,93,94,98,104,105,106,108, %U A325424 110,111,118,122,123,126,128,129,130,132,134,135,136,141,142 %N A325424 Complement of A036668: numbers not of the form 2^i*3^j*k, i + j even, (k,6) = 1. %C A325424 These are the numbers 2x and 3x as x ranges through the numbers in A036668. %C A325424 Numbers whose squarefree part is divisible by exactly one of {2, 3}. - _Peter Munn_, Aug 24 2020 %C A325424 The asymptotic density of this sequence is 5/12. - _Amiram Eldar_, Sep 20 2020 %H A325424 Clark Kimberling, <a href="/A325424/b325424.txt">Table of n, a(n) for n = 1..10000</a> %H A325424 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SymmetricDifference.html">Symmetric difference</a> %F A325424 (2 * {A036668}) union (3 * {A036668}). - _Sean A. Irvine_, May 19 2019 %t A325424 a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or, %t A325424 Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}], %t A325424 IntegerQ]]] &]], {150}]; a (* A036668 *) %t A325424 Complement[Range[Last[a]], a] (* A325424 *) %t A325424 (* _Peter J. C. Moses_, Apr 23 2019 *) %o A325424 (Python) %o A325424 from itertools import count %o A325424 def A325424(n): %o A325424 def bisection(f,kmin=0,kmax=1): %o A325424 while f(kmax) > kmax: kmax <<= 1 %o A325424 kmin = kmax >> 1 %o A325424 while kmax-kmin > 1: %o A325424 kmid = kmax+kmin>>1 %o A325424 if f(kmid) <= kmid: %o A325424 kmax = kmid %o A325424 else: %o A325424 kmin = kmid %o A325424 return kmax %o A325424 def f(x): %o A325424 c = n %o A325424 for i in range(x.bit_length()+1): %o A325424 i2 = 1<<i %o A325424 for j in count(i&1,2): %o A325424 k = i2*3**j %o A325424 if k>x: %o A325424 break %o A325424 m = x//k %o A325424 c += (m-1)//6+(m-5)//6+2 %o A325424 return c %o A325424 return bisection(f,n,n) # _Chai Wah Wu_, Jan 28 2025 %Y A325424 Cf. A325417, A036668. %Y A325424 Symmetric difference of: A003159 and A007417; A036554 and A145204\{0}. %K A325424 nonn,easy %O A325424 1,1 %A A325424 _Clark Kimberling_, Apr 26 2019