This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325456 #5 May 03 2019 21:25:51 %S A325456 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,19,20,21,22,23,25,26,28,29,31, %T A325456 33,34,35,37,38,39,41,42,43,44,45,46,47,49,51,52,53,55,57,58,59,61,62, %U A325456 63,65,66,67,68,69,71,73,74,76,77,78,79,82,83,84,85,86,87 %N A325456 Heinz numbers of integer partitions with strictly increasing differences. %C A325456 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325456 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). %C A325456 The enumeration of these partitions by sum is given by A240027. %H A325456 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325456 The sequence of terms together with their prime indices begins: %e A325456 1: {} %e A325456 2: {1} %e A325456 3: {2} %e A325456 4: {1,1} %e A325456 5: {3} %e A325456 6: {1,2} %e A325456 7: {4} %e A325456 9: {2,2} %e A325456 10: {1,3} %e A325456 11: {5} %e A325456 12: {1,1,2} %e A325456 13: {6} %e A325456 14: {1,4} %e A325456 15: {2,3} %e A325456 17: {7} %e A325456 19: {8} %e A325456 20: {1,1,3} %e A325456 21: {2,4} %e A325456 22: {1,5} %e A325456 23: {9} %t A325456 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325456 Select[Range[100],Less@@Differences[primeptn[#]]&] %Y A325456 Cf. A056239, A112798, A179269, A240026, A240027, A325328, A325352, A325360, A325361, A325368, A325395, A325398, A325457, A325460. %K A325456 nonn %O A325456 1,2 %A A325456 _Gus Wiseman_, May 03 2019