This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325457 #4 May 03 2019 21:25:59 %S A325457 1,2,3,4,5,6,7,9,10,11,13,14,15,17,18,19,21,22,23,25,26,29,31,33,34, %T A325457 35,37,38,39,41,43,46,47,49,50,51,53,55,57,58,59,61,62,65,67,69,70,71, %U A325457 73,74,75,77,79,82,83,85,86,87,89,91,93,94,95,97,98 %N A325457 Heinz numbers of integer partitions with strictly decreasing differences. %C A325457 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325457 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). %C A325457 The enumeration of these partitions by sum is given by A320470. %H A325457 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325457 The sequence of terms together with their prime indices begins: %e A325457 1: {} %e A325457 2: {1} %e A325457 3: {2} %e A325457 4: {1,1} %e A325457 5: {3} %e A325457 6: {1,2} %e A325457 7: {4} %e A325457 9: {2,2} %e A325457 10: {1,3} %e A325457 11: {5} %e A325457 12: {1,1,2} %e A325457 13: {6} %e A325457 14: {1,4} %e A325457 15: {2,3} %e A325457 17: {7} %e A325457 19: {8} %e A325457 20: {1,1,3} %e A325457 21: {2,4} %e A325457 22: {1,5} %e A325457 23: {9} %t A325457 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325457 Select[Range[100],Greater@@Differences[primeptn[#]]&] %Y A325457 Cf. A056239, A112798, A320470, A320510, A325328, A325352, A325360, A325361, A325368, A325399, A325456, A325461, A320470, A325396. %K A325457 nonn %O A325457 1,2 %A A325457 _Gus Wiseman_, May 03 2019