This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325458 #9 Jan 22 2023 17:51:18 %S A325458 1,0,1,0,0,2,0,0,0,3,0,0,0,1,4,0,0,0,0,2,5,0,0,0,0,2,3,6,0,0,0,0,0,4, %T A325458 4,7,0,0,0,0,0,3,6,5,8,0,0,0,0,0,1,6,8,6,9,0,0,0,0,0,0,6,9,10,7,10,0, %U A325458 0,0,0,0,0,2,11,12,12,8,11 %N A325458 Triangle read by rows where T(n,k) is the number of integer partitions of n with largest hook of size k, i.e., with (largest part) + (number of parts) - 1 = k. %C A325458 Conjectured to be equal to A049597. %F A325458 Franklin T. Adams-Watters has conjectured at A049597 that the k-th column gives the coefficients of the sum of Gaussian polynomials [k,m] for m = 0..k. %e A325458 Triangle begins: %e A325458 1 %e A325458 0 1 %e A325458 0 0 2 %e A325458 0 0 0 3 %e A325458 0 0 0 1 4 %e A325458 0 0 0 0 2 5 %e A325458 0 0 0 0 2 3 6 %e A325458 0 0 0 0 0 4 4 7 %e A325458 0 0 0 0 0 3 6 5 8 %e A325458 0 0 0 0 0 1 6 8 6 9 %e A325458 0 0 0 0 0 0 6 9 10 7 10 %e A325458 0 0 0 0 0 0 2 11 12 12 8 11 %e A325458 0 0 0 0 0 0 2 9 16 15 14 9 12 %e A325458 0 0 0 0 0 0 0 7 16 21 18 16 10 13 %e A325458 0 0 0 0 0 0 0 4 18 23 26 21 18 11 14 %e A325458 0 0 0 0 0 0 0 3 12 29 30 31 24 20 12 15 %e A325458 0 0 0 0 0 0 0 1 12 27 40 37 36 27 22 13 16 %e A325458 0 0 0 0 0 0 0 0 8 26 42 51 44 41 30 24 14 17 %e A325458 0 0 0 0 0 0 0 0 6 23 48 57 62 51 46 33 26 15 18 %e A325458 0 0 0 0 0 0 0 0 2 21 44 70 72 73 58 51 36 28 16 19 %e A325458 Row n = 9 counts the following partitions: %e A325458 (333) (54) (63) (72) (9) %e A325458 (432) (522) (621) (81) %e A325458 (441) (531) (5211) (711) %e A325458 (3222) (4221) (42111) (6111) %e A325458 (3321) (4311) (321111) (51111) %e A325458 (22221) (32211) (2211111) (411111) %e A325458 (33111) (3111111) %e A325458 (222111) (21111111) %e A325458 (111111111) %t A325458 Table[Length[Select[IntegerPartitions[n],If[n==0,k==0,First[#]+Length[#]-1==k]&]],{n,0,19},{k,0,n}] %Y A325458 Row sums are A000041. %Y A325458 Column sums are 2^(k - 1) for k > 0. %Y A325458 Cf. A008284, A049597, A093641, A116608, A325242, A325349, A325351, A325355, A325359, A325459. %K A325458 nonn,tabl %O A325458 0,6 %A A325458 _Gus Wiseman_, May 04 2019