cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325458 Triangle read by rows where T(n,k) is the number of integer partitions of n with largest hook of size k, i.e., with (largest part) + (number of parts) - 1 = k.

This page as a plain text file.
%I A325458 #9 Jan 22 2023 17:51:18
%S A325458 1,0,1,0,0,2,0,0,0,3,0,0,0,1,4,0,0,0,0,2,5,0,0,0,0,2,3,6,0,0,0,0,0,4,
%T A325458 4,7,0,0,0,0,0,3,6,5,8,0,0,0,0,0,1,6,8,6,9,0,0,0,0,0,0,6,9,10,7,10,0,
%U A325458 0,0,0,0,0,2,11,12,12,8,11
%N A325458 Triangle read by rows where T(n,k) is the number of integer partitions of n with largest hook of size k, i.e., with (largest part) + (number of parts) - 1 = k.
%C A325458 Conjectured to be equal to A049597.
%F A325458 Franklin T. Adams-Watters has conjectured at A049597 that the k-th column gives the coefficients of the sum of Gaussian polynomials [k,m] for m = 0..k.
%e A325458 Triangle begins:
%e A325458   1
%e A325458   0  1
%e A325458   0  0  2
%e A325458   0  0  0  3
%e A325458   0  0  0  1  4
%e A325458   0  0  0  0  2  5
%e A325458   0  0  0  0  2  3  6
%e A325458   0  0  0  0  0  4  4  7
%e A325458   0  0  0  0  0  3  6  5  8
%e A325458   0  0  0  0  0  1  6  8  6  9
%e A325458   0  0  0  0  0  0  6  9 10  7 10
%e A325458   0  0  0  0  0  0  2 11 12 12  8 11
%e A325458   0  0  0  0  0  0  2  9 16 15 14  9 12
%e A325458   0  0  0  0  0  0  0  7 16 21 18 16 10 13
%e A325458   0  0  0  0  0  0  0  4 18 23 26 21 18 11 14
%e A325458   0  0  0  0  0  0  0  3 12 29 30 31 24 20 12 15
%e A325458   0  0  0  0  0  0  0  1 12 27 40 37 36 27 22 13 16
%e A325458   0  0  0  0  0  0  0  0  8 26 42 51 44 41 30 24 14 17
%e A325458   0  0  0  0  0  0  0  0  6 23 48 57 62 51 46 33 26 15 18
%e A325458   0  0  0  0  0  0  0  0  2 21 44 70 72 73 58 51 36 28 16 19
%e A325458 Row n = 9 counts the following partitions:
%e A325458   (333)  (54)     (63)      (72)       (9)
%e A325458          (432)    (522)     (621)      (81)
%e A325458          (441)    (531)     (5211)     (711)
%e A325458          (3222)   (4221)    (42111)    (6111)
%e A325458          (3321)   (4311)    (321111)   (51111)
%e A325458          (22221)  (32211)   (2211111)  (411111)
%e A325458                   (33111)              (3111111)
%e A325458                   (222111)             (21111111)
%e A325458                                        (111111111)
%t A325458 Table[Length[Select[IntegerPartitions[n],If[n==0,k==0,First[#]+Length[#]-1==k]&]],{n,0,19},{k,0,n}]
%Y A325458 Row sums are A000041.
%Y A325458 Column sums are 2^(k - 1) for k > 0.
%Y A325458 Cf. A008284, A049597, A093641, A116608, A325242, A325349, A325351, A325355, A325359, A325459.
%K A325458 nonn,tabl
%O A325458 0,6
%A A325458 _Gus Wiseman_, May 04 2019