This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325459 #37 Oct 08 2021 03:44:35 %S A325459 0,0,0,0,1,1,3,3,5,6,8,8,12,12,14,16,19,19,23,23,27,29,31,31,37,38,40, %T A325459 42,46,46,52,52,56,58,60,62,69,69,71,73,79,79,85,85,89,93,95,95,103, %U A325459 104,108,110,114,114,120,122,128,130,132,132,142 %N A325459 Sum of numbers of nontrivial divisors (greater than 1 and less than k) of k for k = 1..n. %C A325459 Also the number of integer partitions of n that are not hooks but whose augmented differences are hooks (original name). The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and otherwise aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A325459 This sequence counts integer partitions with any number of ones and one part > 1 which appears at least twice. The Heinz numbers of these partitions are given by A325359. %H A325459 Alois P. Heinz, <a href="/A325459/b325459.txt">Table of n, a(n) for n = 0..10000</a> %F A325459 From _M. F. Hasler_, Oct 11 2019: (Start) %F A325459 a(n) = A006218(n) - 2*n + 1, in terms of partial sums of number of divisors. %F A325459 a(n) = Sum_{k=1..n} A070824(k): partial sums of A070824 = number of nontrivial divisors. (End) %e A325459 The a(4) = 1 through a(10) = 8 partitions: %e A325459 (22) (221) (33) (331) (44) (333) (55) %e A325459 (222) (2221) (2222) (441) (3331) %e A325459 (2211) (22111) (3311) (22221) (4411) %e A325459 (22211) (33111) (22222) %e A325459 (221111) (222111) (222211) %e A325459 (2211111) (331111) %e A325459 (2221111) %e A325459 (22111111) %p A325459 a:= proc(n) option remember; `if`(n<2, 0, %p A325459 numtheory[tau](n)-2+a(n-1)) %p A325459 end: %p A325459 seq(a(n), n=0..100); # _Alois P. Heinz_, Oct 11 2019 %t A325459 Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,y__,1...}/;x>1&&SameQ[x,y]]&]],{n,0,30}] %t A325459 (* Second program: *) %t A325459 a[n_] := a[n] = If[n<2, 0, DivisorSigma[0, n] - 2 + a[n-1]]; %t A325459 a /@ Range[0, 100] (* _Jean-François Alcover_, May 20 2021, after _Alois P. Heinz_ *) %o A325459 (Python) %o A325459 from math import isqrt %o A325459 def A325459(n): return 0 if n == 0 else (lambda m: 2*(sum(n//k for k in range(1, m+1))-n)+(1-m)*(1+m))(isqrt(n)) # _Chai Wah Wu_, Oct 07 2021 %Y A325459 Cf. A049988, A093641, A325349, A325351, A325355, A325356, A325357, A325358. %Y A325459 Cf. A070824, A006218. %K A325459 nonn %O A325459 0,7 %A A325459 _Gus Wiseman_, May 04 2019 %E A325459 Name changed at the suggestion of _Patrick James Smalley-Wall_ and _Luc Rousseau_ by _Gus Wiseman_, Oct 11 2019