cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325460 Heinz numbers of integer partitions with strictly increasing differences (with the last part taken to be 0).

This page as a plain text file.
%I A325460 #4 May 31 2019 03:44:36
%S A325460 1,2,3,5,7,10,11,13,14,17,19,22,23,26,29,31,33,34,37,38,39,41,43,46,
%T A325460 47,51,53,57,58,59,61,62,67,69,71,73,74,79,82,83,85,86,87,89,93,94,95,
%U A325460 97,101,103,106,107,109,111,113,115,118,122,123,127,129,130,131
%N A325460 Heinz numbers of integer partitions with strictly increasing differences (with the last part taken to be 0).
%C A325460 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325460 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
%C A325460 The enumeration of these partitions by sum is given by A179269.
%H A325460 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325460 The sequence of terms together with their prime indices begins:
%e A325460     1: {}
%e A325460     2: {1}
%e A325460     3: {2}
%e A325460     5: {3}
%e A325460     7: {4}
%e A325460    10: {1,3}
%e A325460    11: {5}
%e A325460    13: {6}
%e A325460    14: {1,4}
%e A325460    17: {7}
%e A325460    19: {8}
%e A325460    22: {1,5}
%e A325460    23: {9}
%e A325460    26: {1,6}
%e A325460    29: {10}
%e A325460    31: {11}
%e A325460    33: {2,5}
%e A325460    34: {1,7}
%e A325460    37: {12}
%e A325460    38: {1,8}
%t A325460 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325460 Select[Range[100],Less@@Differences[Append[primeptn[#],0]]&]
%Y A325460 A subsequence of A005117.
%Y A325460 Cf. A007294, A056239, A112798, A179269, A325327, A325362, A325364, A325367, A325388, A325390, A325395, A325398, A325456, A325461.
%K A325460 nonn
%O A325460 1,2
%A A325460 _Gus Wiseman_, May 03 2019