This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325460 #4 May 31 2019 03:44:36 %S A325460 1,2,3,5,7,10,11,13,14,17,19,22,23,26,29,31,33,34,37,38,39,41,43,46, %T A325460 47,51,53,57,58,59,61,62,67,69,71,73,74,79,82,83,85,86,87,89,93,94,95, %U A325460 97,101,103,106,107,109,111,113,115,118,122,123,127,129,130,131 %N A325460 Heinz numbers of integer partitions with strictly increasing differences (with the last part taken to be 0). %C A325460 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325460 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1). %C A325460 The enumeration of these partitions by sum is given by A179269. %H A325460 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325460 The sequence of terms together with their prime indices begins: %e A325460 1: {} %e A325460 2: {1} %e A325460 3: {2} %e A325460 5: {3} %e A325460 7: {4} %e A325460 10: {1,3} %e A325460 11: {5} %e A325460 13: {6} %e A325460 14: {1,4} %e A325460 17: {7} %e A325460 19: {8} %e A325460 22: {1,5} %e A325460 23: {9} %e A325460 26: {1,6} %e A325460 29: {10} %e A325460 31: {11} %e A325460 33: {2,5} %e A325460 34: {1,7} %e A325460 37: {12} %e A325460 38: {1,8} %t A325460 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325460 Select[Range[100],Less@@Differences[Append[primeptn[#],0]]&] %Y A325460 A subsequence of A005117. %Y A325460 Cf. A007294, A056239, A112798, A179269, A325327, A325362, A325364, A325367, A325388, A325390, A325395, A325398, A325456, A325461. %K A325460 nonn %O A325460 1,2 %A A325460 _Gus Wiseman_, May 03 2019