This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325461 #7 May 03 2019 21:26:15 %S A325461 1,2,3,4,5,7,9,11,13,15,17,19,23,25,29,31,35,37,41,43,47,49,53,55,59, %T A325461 61,67,71,73,75,77,79,83,89,91,97,101,103,107,109,113,119,121,127,131, %U A325461 137,139,143,149,151,157,163,167,169,173,179,181,187,191,193,197 %N A325461 Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0). %C A325461 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325461 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1). %C A325461 The enumeration of these partitions by sum is given by A320510. %H A325461 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325461 The sequence of terms together with their prime indices begins: %e A325461 1: {} %e A325461 2: {1} %e A325461 3: {2} %e A325461 4: {1,1} %e A325461 5: {3} %e A325461 7: {4} %e A325461 9: {2,2} %e A325461 11: {5} %e A325461 13: {6} %e A325461 15: {2,3} %e A325461 17: {7} %e A325461 19: {8} %e A325461 23: {9} %e A325461 25: {3,3} %e A325461 29: {10} %e A325461 31: {11} %e A325461 35: {3,4} %e A325461 37: {12} %e A325461 41: {13} %e A325461 43: {14} %t A325461 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325461 Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&] %Y A325461 Cf. A056239, A112798, A320510, A325327, A325362, A325364, A325367, A325388, A325390, A325396, A325399, A325407, A325457, A325460. %K A325461 nonn %O A325461 1,2 %A A325461 _Gus Wiseman_, May 03 2019