cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325461 Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).

This page as a plain text file.
%I A325461 #7 May 03 2019 21:26:15
%S A325461 1,2,3,4,5,7,9,11,13,15,17,19,23,25,29,31,35,37,41,43,47,49,53,55,59,
%T A325461 61,67,71,73,75,77,79,83,89,91,97,101,103,107,109,113,119,121,127,131,
%U A325461 137,139,143,149,151,157,163,167,169,173,179,181,187,191,193,197
%N A325461 Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).
%C A325461 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325461 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
%C A325461 The enumeration of these partitions by sum is given by A320510.
%H A325461 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325461 The sequence of terms together with their prime indices begins:
%e A325461     1: {}
%e A325461     2: {1}
%e A325461     3: {2}
%e A325461     4: {1,1}
%e A325461     5: {3}
%e A325461     7: {4}
%e A325461     9: {2,2}
%e A325461    11: {5}
%e A325461    13: {6}
%e A325461    15: {2,3}
%e A325461    17: {7}
%e A325461    19: {8}
%e A325461    23: {9}
%e A325461    25: {3,3}
%e A325461    29: {10}
%e A325461    31: {11}
%e A325461    35: {3,4}
%e A325461    37: {12}
%e A325461    41: {13}
%e A325461    43: {14}
%t A325461 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325461 Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]
%Y A325461 Cf. A056239, A112798, A320510, A325327, A325362, A325364, A325367, A325388, A325390, A325396, A325399, A325407, A325457, A325460.
%K A325461 nonn
%O A325461 1,2
%A A325461 _Gus Wiseman_, May 03 2019