cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325466 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree > 0.

This page as a plain text file.
%I A325466 #7 May 04 2019 08:32:06
%S A325466 1,1,0,1,1,0,1,2,0,0,1,3,1,0,0,1,3,2,1,0,0,1,5,4,0,1,0,0,1,4,6,3,0,1,
%T A325466 0,0,1,6,6,4,3,1,1,0,0,1,6,10,4,2,4,1,2,0,0,1,7,12,8,3,3,4,1,2,1,0,1,
%U A325466 6,13,11,2,11,3,4,0,3,1,1,1,10,16,7,10,10
%N A325466 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree > 0.
%C A325466 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
%C A325466 The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
%e A325466 Triangle begins:
%e A325466   1
%e A325466   1  0
%e A325466   1  1  0
%e A325466   1  2  0  0
%e A325466   1  3  1  0  0
%e A325466   1  3  2  1  0  0
%e A325466   1  5  4  0  1  0  0
%e A325466   1  4  6  3  0  1  0  0
%e A325466   1  6  6  4  3  1  1  0  0
%e A325466   1  6 10  4  2  4  1  2  0  0
%e A325466   1  7 12  8  3  3  4  1  2  1  0
%e A325466   1  6 13 11  2 11  3  4  0  3  1  1
%e A325466   1 10 16  7 10 10  6  6  5  1  1  2  1
%e A325466   1  7 18 14  7 16 11  6  4  8  0  5  0  1
%e A325466   1  9 20 18 10 20 13 10 10  4  5  5  2  2  2
%e A325466   1 10 26 18 10 24 13 19 13 10  6  6  2  8  1  2
%e A325466   1 11 25 24 16 28 19 24 14 15  9 10  9  5  2  7  1
%e A325466 Row 7 counts the following reversed partitions (empty columns not shown):
%e A325466   (7)  (16)       (115)     (133)   (11122)
%e A325466        (25)       (124)     (1123)
%e A325466        (34)       (223)     (1222)
%e A325466        (1111111)  (1114)
%e A325466                   (11113)
%e A325466                   (111112)
%e A325466 Row 9 counts the following reversed partitions (empty columns not shown):
%e A325466 (9)  (18)         (117)       (126)    (1125)   (1134)    (11223)  (111222)
%e A325466      (27)         (135)       (144)    (11124)  (1224)             (1111122)
%e A325466      (36)         (225)       (1233)            (11133)
%e A325466      (45)         (234)       (12222)           (111123)
%e A325466      (333)        (1116)
%e A325466      (111111111)  (2223)
%e A325466                   (11115)
%e A325466                   (111114)
%e A325466                   (1111113)
%e A325466                   (11111112)
%t A325466 Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,1,Length[#]}]]==k&]],{n,0,16},{k,0,n}]
%Y A325466 Row sums are A000041. Column k = 1 is A088922.
%Y A325466 Cf. A098859, A279945, A325242, A325324, A325325, A325349, A325404, A325405, A325406, A325468.
%K A325466 nonn,tabl
%O A325466 0,8
%A A325466 _Gus Wiseman_, May 04 2019