This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325470 #12 Sep 08 2022 08:46:24 %S A325470 1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,29,1,7,1,1,1,1, %T A325470 1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,29,1,1,1,7,1,1,1,1,1,7,1,1, %U A325470 1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,35,1,1 %N A325470 a(n) is the sum of divisors d of n such that d divides sigma(d). %H A325470 Antti Karttunen, <a href="/A325470/b325470.txt">Table of n, a(n) for n = 1..20000</a> %F A325470 a(A097603(n)) > 1. %e A325470 For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 1 + 6 = 7. %t A325470 a[n_] := DivisorSum[n, # &, Divisible[DivisorSigma[1, #], #] &]; Array[a, 100] (* _Amiram Eldar_, Aug 17 2019 *) %o A325470 (Magma) [&+[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]] %o A325470 (PARI) a(n)={sumdiv(n, d, if(sigma(d) % d == 0, d))} \\ _Andrew Howroyd_, Aug 16 2019 %Y A325470 Cf. A000203, A097603, A325469, A325471. %K A325470 nonn %O A325470 1,6 %A A325470 _Jaroslav Krizek_, Aug 16 2019