cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325470 a(n) is the sum of divisors d of n such that d divides sigma(d).

This page as a plain text file.
%I A325470 #12 Sep 08 2022 08:46:24
%S A325470 1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,29,1,7,1,1,1,1,
%T A325470 1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,7,1,29,1,1,1,7,1,1,1,1,1,7,1,1,
%U A325470 1,1,1,7,1,1,1,1,1,7,1,1,1,1,1,35,1,1
%N A325470 a(n) is the sum of divisors d of n such that d divides sigma(d).
%H A325470 Antti Karttunen, <a href="/A325470/b325470.txt">Table of n, a(n) for n = 1..20000</a>
%F A325470 a(A097603(n)) > 1.
%e A325470 For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 1 + 6 = 7.
%t A325470 a[n_] := DivisorSum[n, # &, Divisible[DivisorSigma[1, #], #] &];  Array[a, 100] (* _Amiram Eldar_, Aug 17 2019 *)
%o A325470 (Magma) [&+[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]]
%o A325470 (PARI) a(n)={sumdiv(n, d, if(sigma(d) % d == 0, d))} \\ _Andrew Howroyd_, Aug 16 2019
%Y A325470 Cf. A000203, A097603, A325469, A325471.
%K A325470 nonn
%O A325470 1,6
%A A325470 _Jaroslav Krizek_, Aug 16 2019