This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325471 #12 Sep 08 2022 08:46:24 %S A325471 1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,28,1,6,1,1,1,1, %T A325471 1,6,1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,6,1,28,1,1,1,6,1,1,1,1,1,6,1,1, %U A325471 1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,168,1,1 %N A325471 a(n) is the product of divisors d of n such that d divides sigma(d). %H A325471 Antti Karttunen, <a href="/A325471/b325471.txt">Table of n, a(n) for n = 1..16384</a> %F A325471 a(A097603(n)) > 1. %e A325471 For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 1 * 6 = 6. %t A325471 a[n_] := Times @@ Select[Divisors[n], Divisible[DivisorSigma[1, #], #] &]; Array[a, 100] (* _Amiram Eldar_, Aug 17 2019 *) %o A325471 (Magma) [&*[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]] %o A325471 (PARI) a(n)={vecprod([d | d<-divisors(n), sigma(d) % d==0])} \\ _Andrew Howroyd_, Aug 16 2019 %Y A325471 Cf. A000203, A097603, A325469, A325470. %K A325471 nonn %O A325471 1,6 %A A325471 _Jaroslav Krizek_, Aug 16 2019