This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325481 #11 Dec 14 2020 08:32:08 %S A325481 1,1,41,8020,4396189,5226876501,11581358373398,43225961160925257, %T A325481 252807246693691825421,2194141947654736889023357, %U A325481 27084992620572948369385642201,459597167193175440533390098112664,10424556988338412210154331381461375830 %N A325481 Number of colored set partitions of [2n] where colors of the elements of subsets are distinct and in increasing order and exactly n colors are used. %H A325481 Alois P. Heinz, <a href="/A325481/b325481.txt">Table of n, a(n) for n = 0..151</a> %F A325481 a(n) = A322670(2n,n). %p A325481 b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)* %p A325481 binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n))) %p A325481 end: %p A325481 a:= n-> add(b(2*n, n-i)*(-1)^i*binomial(n, i), i=0..n): %p A325481 seq(a(n), n=0..14); %t A325481 b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k, j], {j, 1, Min[k, n]}]]; %t A325481 a[n_] := Sum[b[2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}]; %t A325481 a /@ Range[0, 14] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *) %Y A325481 Cf. A322670. %K A325481 nonn %O A325481 0,3 %A A325481 _Alois P. Heinz_, Sep 06 2019