A325488 Dimensions of space of harmonic polynomials of each degree invariant under the full icosahedral group.
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 3, 0, 2, 0, 3, 0, 3, 0, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 4, 0, 3, 0, 3, 0, 4, 0, 3, 0, 4
Offset: 0
Links
- Burnett Meyer, On the symmetries of spherical harmonics, Canadian Journal of Mathematics 6 (1954): 135-157.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,-1).
Crossrefs
Cf. A008651 for the icosahedral rotation group which is derived from this sequence using Theorem 8 of Meyer, h(t,I)=(1+t^15)*h(t,I_h) as I_h has 15 symmetry planes.
Programs
-
Mathematica
CoefficientList[Series[(1 - t^10)^(-1) (1 - t^6)^(-1) , {t, 0, 100}], t]
-
PARI
Vec(1 / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^100)) \\ Colin Barker, Jun 26 2019
Formula
G.f.: 1/((1 - t^10)*(1 - t^6)).
a(n) = a(n-6) + a(n-10) - a(n-16) for n>15. - Colin Barker, Jun 26 2019
Comments