cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325498 Difference sequence of A036668.

Original entry on oeis.org

3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 3, 1, 1, 3, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 2, 2, 4, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 4, 2, 4, 1, 1, 1, 3, 1, 1, 3, 1
Offset: 1

Views

Author

Clark Kimberling, May 05 2019

Keywords

Comments

See A325417 for a guide to related sequences.
Conjecture: every term is in {1,2,3,4}.

Examples

			A036668 is given by A(n) = least number not 2*A(m) or 3*A(m) for any m < n, so that A = (1,4,5,6,7,9,11,...), with differences (3,1,1,1,2,2,...).
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
    IntegerQ]]] &]], {2000}]; a ;       (* A036668 *)
    c = Complement[Range[Last[a]], a] ; (* A325424 *)
    Differences[a]  (* A325498 *)
    Differences[c]  (* A325499 *)
    (* Peter J. C. Moses, Apr 23 2019 *)

Formula

Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 12/7. - Amiram Eldar, Nov 26 2020