A325498 Difference sequence of A036668.
3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 3, 1, 1, 3, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 2, 2, 4, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 4, 2, 4, 1, 1, 1, 3, 1, 1, 3, 1
Offset: 1
Examples
A036668 is given by A(n) = least number not 2*A(m) or 3*A(m) for any m < n, so that A = (1,4,5,6,7,9,11,...), with differences (3,1,1,1,2,2,...).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}], IntegerQ]]] &]], {2000}]; a ; (* A036668 *) c = Complement[Range[Last[a]], a] ; (* A325424 *) Differences[a] (* A325498 *) Differences[c] (* A325499 *) (* Peter J. C. Moses, Apr 23 2019 *)
Formula
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 12/7. - Amiram Eldar, Nov 26 2020
Comments