cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325500 Heinz number of the set of Heinz numbers of integer partitions of n. Heinz numbers of rows of A215366.

This page as a plain text file.
%I A325500 #12 May 07 2019 17:37:44
%S A325500 2,3,35,2717,22235779,3163570326979,51747966790650260753033,
%T A325500 188828800892079861898153036258130093,
%U A325500 2034903808706825942766196978067005215014684343665351270467,75367279796373180679613801327275978589820813788234346991420766634058571423774287454563
%N A325500 Heinz number of the set of Heinz numbers of integer partitions of n. Heinz numbers of rows of A215366.
%C A325500 The Heinz number of a set of positive integers {y_1,...,y_k} is prime(y_1)*...*prime(y_k).
%C A325500 All terms are squarefree and pairwise relatively prime.
%H A325500 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F A325500 A001221(a(n)) = A001222(a(n)) = A000041(n).
%F A325500 A056239(a(n)) = A145519(n).
%F A325500 A003963(a(n)) = A325501(n).
%F A325500 A181819(A003963(a(n))) = A325507(n).
%e A325500 The integer partitions of 3 are {(3), (2,1), (1,1,1)}, with Heinz numbers {5,6,8}, with Heinz number prime(5)*prime(6)*prime(8) = 2717, so a(3) = 2717.
%e A325500 The sequence of terms together with their prime indices begins:
%e A325500                         2: {1}
%e A325500                         3: {2}
%e A325500                        35: {3,4}
%e A325500                      2717: {5,6,8}
%e A325500                  22235779: {7,9,10,12,16}
%e A325500             3163570326979: {11,14,15,18,20,24,32}
%e A325500   51747966790650260753033: {13,21,22,25,27,28,30,36,40,48,64}
%t A325500 Table[Times@@Prime/@(Times@@Prime/@#&/@IntegerPartitions[n]),{n,0,5}]
%Y A325500 A subsequence of A005117.
%Y A325500 Cf. A001222, A002110, A003963, A006128, A007870, A056239, A066186, A066633, A112798, A145519, A215366, A325501, A325505, A325507.
%K A325500 nonn
%O A325500 0,1
%A A325500 _Gus Wiseman_, May 05 2019