This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325500 #12 May 07 2019 17:37:44 %S A325500 2,3,35,2717,22235779,3163570326979,51747966790650260753033, %T A325500 188828800892079861898153036258130093, %U A325500 2034903808706825942766196978067005215014684343665351270467,75367279796373180679613801327275978589820813788234346991420766634058571423774287454563 %N A325500 Heinz number of the set of Heinz numbers of integer partitions of n. Heinz numbers of rows of A215366. %C A325500 The Heinz number of a set of positive integers {y_1,...,y_k} is prime(y_1)*...*prime(y_k). %C A325500 All terms are squarefree and pairwise relatively prime. %H A325500 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a> %F A325500 A001221(a(n)) = A001222(a(n)) = A000041(n). %F A325500 A056239(a(n)) = A145519(n). %F A325500 A003963(a(n)) = A325501(n). %F A325500 A181819(A003963(a(n))) = A325507(n). %e A325500 The integer partitions of 3 are {(3), (2,1), (1,1,1)}, with Heinz numbers {5,6,8}, with Heinz number prime(5)*prime(6)*prime(8) = 2717, so a(3) = 2717. %e A325500 The sequence of terms together with their prime indices begins: %e A325500 2: {1} %e A325500 3: {2} %e A325500 35: {3,4} %e A325500 2717: {5,6,8} %e A325500 22235779: {7,9,10,12,16} %e A325500 3163570326979: {11,14,15,18,20,24,32} %e A325500 51747966790650260753033: {13,21,22,25,27,28,30,36,40,48,64} %t A325500 Table[Times@@Prime/@(Times@@Prime/@#&/@IntegerPartitions[n]),{n,0,5}] %Y A325500 A subsequence of A005117. %Y A325500 Cf. A001222, A002110, A003963, A006128, A007870, A056239, A066186, A066633, A112798, A145519, A215366, A325501, A325505, A325507. %K A325500 nonn %O A325500 0,1 %A A325500 _Gus Wiseman_, May 05 2019