cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325501 Product of Heinz numbers over all integer partitions of n.

This page as a plain text file.
%I A325501 #7 May 07 2019 17:37:52
%S A325501 1,2,12,240,120960,638668800,15064408719360000,
%T A325501 27259975545259032576000000,
%U A325501 682714624600511148826789083611136000000000,2948964060660649503322235948384635104494106968064000000000000000
%N A325501 Product of Heinz numbers over all integer partitions of n.
%C A325501 Row-products of A215366 (positive integers arranged by sum of prime indices A056239).
%C A325501 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325501 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F A325501 A001222(a(n)) = A006128(n).
%F A325501 A056239(a(n)) = A066186(n).
%F A325501 A003963(a(n)) = A007870(n).
%F A325501 A124010(a(n),i) = A066633(n,i).
%e A325501 The integer partitions of 3 are {(3), (2,1), (1,1,1)}, with Heinz numbers {5,6,8}, with product 240, so a(3) = 240.
%e A325501 The sequence of terms together with their prime indices begins:
%e A325501           1: {}
%e A325501           2: {1}
%e A325501          12: {1,1,2}
%e A325501         240: {1,1,1,1,2,3}
%e A325501      120960: {1,1,1,1,1,1,1,2,2,2,3,4}
%e A325501   638668800: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5}
%t A325501 Table[Times@@Prime/@(Join@@IntegerPartitions[n]),{n,0,5}]
%Y A325501 Cf. A003963, A006128, A007870, A008284, A056239, A066186, A066633, A112798, A118914, A124010, A145519, A215366, A325500, A325506, A325507.
%K A325501 nonn
%O A325501 0,2
%A A325501 _Gus Wiseman_, May 06 2019