This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325501 #7 May 07 2019 17:37:52 %S A325501 1,2,12,240,120960,638668800,15064408719360000, %T A325501 27259975545259032576000000, %U A325501 682714624600511148826789083611136000000000,2948964060660649503322235948384635104494106968064000000000000000 %N A325501 Product of Heinz numbers over all integer partitions of n. %C A325501 Row-products of A215366 (positive integers arranged by sum of prime indices A056239). %C A325501 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325501 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a> %F A325501 A001222(a(n)) = A006128(n). %F A325501 A056239(a(n)) = A066186(n). %F A325501 A003963(a(n)) = A007870(n). %F A325501 A124010(a(n),i) = A066633(n,i). %e A325501 The integer partitions of 3 are {(3), (2,1), (1,1,1)}, with Heinz numbers {5,6,8}, with product 240, so a(3) = 240. %e A325501 The sequence of terms together with their prime indices begins: %e A325501 1: {} %e A325501 2: {1} %e A325501 12: {1,1,2} %e A325501 240: {1,1,1,1,2,3} %e A325501 120960: {1,1,1,1,1,1,1,2,2,2,3,4} %e A325501 638668800: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5} %t A325501 Table[Times@@Prime/@(Join@@IntegerPartitions[n]),{n,0,5}] %Y A325501 Cf. A003963, A006128, A007870, A008284, A056239, A066186, A066633, A112798, A118914, A124010, A145519, A215366, A325500, A325506, A325507. %K A325501 nonn %O A325501 0,2 %A A325501 _Gus Wiseman_, May 06 2019