cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325502 Heinz number of row n of Pascal's triangle A007318.

This page as a plain text file.
%I A325502 #7 May 07 2019 17:38:01
%S A325502 2,4,12,100,2548,407044,106023164,136765353124,399090759725236,
%T A325502 4445098474836287524,151287513513627682258436,
%U A325502 12698799587219706700017036196,3463928752077516667634331415766516,2591202267595530693505786197581910681796
%N A325502 Heinz number of row n of Pascal's triangle A007318.
%C A325502 The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325502 Every odd-indexed term is a square of a squarefree number.
%H A325502 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F A325502 A061395(a(n)) = A001405(n).
%F A325502 A056239(a(n)) = A000079(n).
%F A325502 A181819(a(n)) = A038754(n + 1).
%e A325502 Row n = 5 of Pascal's triangle is (1,5,10,10,5,1), with Heinz number prime(1)*prime(5)*prime(10)*prime(10)*prime(5)*prime(1) = 407044, so a(5) = 407044.
%e A325502 The sequence of terms together with their prime indices begins:
%e A325502                     2: {1}
%e A325502                     4: {1,1}
%e A325502                    12: {1,1,2}
%e A325502                   100: {1,1,3,3}
%e A325502                  2548: {1,1,4,4,6}
%e A325502                407044: {1,1,5,5,10,10}
%e A325502             106023164: {1,1,6,6,15,15,20}
%e A325502          136765353124: {1,1,7,7,21,21,35,35}
%e A325502       399090759725236: {1,1,8,8,28,28,56,56,70}
%e A325502   4445098474836287524: {1,1,9,9,36,36,84,84,126,126}
%t A325502 Times@@@Table[Prime[Binomial[n,k]],{n,0,5},{k,0,n}]
%Y A325502 Cf. A000040, A001222, A001405, A007318, A056239, A112798, A145519, A215366, A325500, A325503, A325505, A325514.
%K A325502 nonn,easy
%O A325502 0,1
%A A325502 _Gus Wiseman_, May 06 2019