This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325502 #7 May 07 2019 17:38:01 %S A325502 2,4,12,100,2548,407044,106023164,136765353124,399090759725236, %T A325502 4445098474836287524,151287513513627682258436, %U A325502 12698799587219706700017036196,3463928752077516667634331415766516,2591202267595530693505786197581910681796 %N A325502 Heinz number of row n of Pascal's triangle A007318. %C A325502 The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325502 Every odd-indexed term is a square of a squarefree number. %H A325502 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a> %F A325502 A061395(a(n)) = A001405(n). %F A325502 A056239(a(n)) = A000079(n). %F A325502 A181819(a(n)) = A038754(n + 1). %e A325502 Row n = 5 of Pascal's triangle is (1,5,10,10,5,1), with Heinz number prime(1)*prime(5)*prime(10)*prime(10)*prime(5)*prime(1) = 407044, so a(5) = 407044. %e A325502 The sequence of terms together with their prime indices begins: %e A325502 2: {1} %e A325502 4: {1,1} %e A325502 12: {1,1,2} %e A325502 100: {1,1,3,3} %e A325502 2548: {1,1,4,4,6} %e A325502 407044: {1,1,5,5,10,10} %e A325502 106023164: {1,1,6,6,15,15,20} %e A325502 136765353124: {1,1,7,7,21,21,35,35} %e A325502 399090759725236: {1,1,8,8,28,28,56,56,70} %e A325502 4445098474836287524: {1,1,9,9,36,36,84,84,126,126} %t A325502 Times@@@Table[Prime[Binomial[n,k]],{n,0,5},{k,0,n}] %Y A325502 Cf. A000040, A001222, A001405, A007318, A056239, A112798, A145519, A215366, A325500, A325503, A325505, A325514. %K A325502 nonn,easy %O A325502 0,1 %A A325502 _Gus Wiseman_, May 06 2019