This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325505 #10 May 07 2019 23:14:18 %S A325505 2,3,5,143,493,62651,26718511,22017033127,44220524211551, %T A325505 52289759420183033963,546407750301194131199484983, %U A325505 8362548333129019658779663581495109,1828111016191440393570169991636207115709029581,1059934964500839879758659437301868941873808925011368355891 %N A325505 Heinz number of the set of Heinz numbers of all strict integer partitions of n. %C A325505 The Heinz number of a set or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325505 Also Heinz numbers of rows of A246867 (squarefree numbers arranged by sum of prime indices A056239). %H A325505 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a> %F A325505 a(n) = Product_{i = 1..A000009(n)} prime(A246867(n,i)). %F A325505 A001221(a(n)) = A001222(a(n)) = A000009(n). %F A325505 A056239(a(n)) = A147655(n). %F A325505 A003963(a(n)) = A325506(n). %e A325505 The strict integer partitions of 5 are {(5), (4,1), (3,2)}, with Heinz numbers {11,14,15}, with Heinz number prime(11)*prime(14)*prime(15) = 62651, so a(6) = 62651. %e A325505 The sequence of terms together with their prime indices begins: %e A325505 2: {1} %e A325505 3: {2} %e A325505 5: {3} %e A325505 143: {5,6} %e A325505 493: {7,10} %e A325505 62651: {11,14,15} %e A325505 26718511: {13,21,22,30} %e A325505 22017033127: {17,26,33,35,42} %e A325505 44220524211551: {19,34,39,55,66,70} %e A325505 52289759420183033963: {23,38,51,65,77,78,105,110} %e A325505 546407750301194131199484983: {29,46,57,85,91,102,130,154,165,210} %t A325505 Table[Times@@Prime/@(Times@@Prime/@#&/@Select[IntegerPartitions[n],UnsameQ@@#&]),{n,7}] %Y A325505 Cf. A001222, A003963, A015723, A056239, A066189, A112798, A145519, A147655, A215366, A246867, A325500 (non-strict version), A325504, A325506, A325512, A325513. %K A325505 nonn %O A325505 0,1 %A A325505 _Gus Wiseman_, May 07 2019