cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325505 Heinz number of the set of Heinz numbers of all strict integer partitions of n.

This page as a plain text file.
%I A325505 #10 May 07 2019 23:14:18
%S A325505 2,3,5,143,493,62651,26718511,22017033127,44220524211551,
%T A325505 52289759420183033963,546407750301194131199484983,
%U A325505 8362548333129019658779663581495109,1828111016191440393570169991636207115709029581,1059934964500839879758659437301868941873808925011368355891
%N A325505 Heinz number of the set of Heinz numbers of all strict integer partitions of n.
%C A325505 The Heinz number of a set or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325505 Also Heinz numbers of rows of A246867 (squarefree numbers arranged by sum of prime indices A056239).
%H A325505 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F A325505 a(n) = Product_{i = 1..A000009(n)} prime(A246867(n,i)).
%F A325505 A001221(a(n)) = A001222(a(n)) = A000009(n).
%F A325505 A056239(a(n)) = A147655(n).
%F A325505 A003963(a(n)) = A325506(n).
%e A325505 The strict integer partitions of 5 are {(5), (4,1), (3,2)}, with Heinz numbers {11,14,15}, with Heinz number prime(11)*prime(14)*prime(15) = 62651, so a(6) = 62651.
%e A325505 The sequence of terms together with their prime indices begins:
%e A325505                             2: {1}
%e A325505                             3: {2}
%e A325505                             5: {3}
%e A325505                           143: {5,6}
%e A325505                           493: {7,10}
%e A325505                         62651: {11,14,15}
%e A325505                      26718511: {13,21,22,30}
%e A325505                   22017033127: {17,26,33,35,42}
%e A325505                44220524211551: {19,34,39,55,66,70}
%e A325505          52289759420183033963: {23,38,51,65,77,78,105,110}
%e A325505   546407750301194131199484983: {29,46,57,85,91,102,130,154,165,210}
%t A325505 Table[Times@@Prime/@(Times@@Prime/@#&/@Select[IntegerPartitions[n],UnsameQ@@#&]),{n,7}]
%Y A325505 Cf. A001222, A003963, A015723, A056239, A066189, A112798, A145519, A147655, A215366, A246867, A325500 (non-strict version), A325504, A325506, A325512, A325513.
%K A325505 nonn
%O A325505 0,1
%A A325505 _Gus Wiseman_, May 07 2019