cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325506 Product of Heinz numbers over all strict integer partitions of n.

This page as a plain text file.
%I A325506 #7 May 07 2019 23:14:25
%S A325506 1,2,3,30,70,2310,180180,21441420,6401795400,200984366583000,
%T A325506 41615822944675980000,10515527757483671302380000,
%U A325506 4919824049783476260137727416400000,5158181210492841550866520676965246284000000,29776760895364738730693151196801613158042403043600000000
%N A325506 Product of Heinz numbers over all strict integer partitions of n.
%C A325506 a(n) is the product of row n of A246867 (squarefree numbers arranged by sum of prime indices).
%C A325506 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%F A325506 a(n) = Product_{i = 1..A000009(n)} A246867(n,i).
%F A325506 A001222(a(n)) = A015723(n).
%F A325506 A056239(a(n)) = A066189(n).
%F A325506 A003963(a(n)) = A325504(n).
%F A325506 a(n) = A003963(A325505(n)).
%e A325506 The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with Heinz numbers {13,22,21,30}, with product 13*22*21*30 = 180180, so a(6) = 180180.
%e A325506 The sequence of terms together with their prime indices begins:
%e A325506                      1: {}
%e A325506                      2: {1}
%e A325506                      3: {2}
%e A325506                     30: {1,2,3}
%e A325506                     70: {1,3,4}
%e A325506                   2310: {1,2,3,4,5}
%e A325506                 180180: {1,1,2,2,3,4,5,6}
%e A325506               21441420: {1,1,2,2,3,4,4,5,6,7}
%e A325506             6401795400: {1,1,1,2,2,3,3,4,5,5,6,7,8}
%e A325506        200984366583000: {1,1,1,2,2,2,3,3,3,4,4,5,5,6,6,7,8,9}
%e A325506   41615822944675980000: {1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,5,5,6,6,7,7,8,9,10}
%t A325506 Table[Times@@Prime/@(Join@@Select[IntegerPartitions[n],UnsameQ@@#&]),{n,0,15}]
%Y A325506 Cf. A003963, A006128, A015723, A022629, A056239, A112798, A147655, A215366, A246867, A325501, A325504, A325505, A325512, A325513.
%K A325506 nonn
%O A325506 0,2
%A A325506 _Gus Wiseman_, May 07 2019