cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325507 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all integer partitions of n.

This page as a plain text file.
%I A325507 #8 May 07 2019 23:14:32
%S A325507 1,2,6,28,340,3108,106932,2732340,236790060,19703562780,3419598096420,
%T A325507 674127752953380,264134168649181380,95825592671995399620,
%U A325507 67662122741507082338220,50556978553034312461203420,69259146896604886347745839660,104191622563656655781003976625020
%N A325507 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all integer partitions of n.
%C A325507 Also the Heinz number of row n of A066633.
%C A325507 The Heinz number of an integer partition or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325507 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F A325507 a(n) = Product_{i = 1..n} prime(A066633(n,i)).
%F A325507 a(n) = A181819(A003963(A325500(n))).
%F A325507 a(n) = A181819(A325501(n)).
%F A325507 A001222(a(n)) = n.
%F A325507 A056239(a(n)) = A006128(n).
%F A325507 For n > 0, A181819(a(n)) = A087009(n + 1).
%e A325507 The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)}, with multiset union {1,1,1,1,1,1,1,2,2,2,3,4}, with multiplicities (7,3,1,1), so a(4) = prime(7)*prime(3)*prime(1)*prime(1) = 340.
%e A325507 The sequence of terms together with their prime indices begins:
%e A325507                         1: {}
%e A325507                         2: {1}
%e A325507                         6: {1,2}
%e A325507                        28: {1,1,4}
%e A325507                       340: {1,1,3,7}
%e A325507                      3108: {1,1,2,4,12}
%e A325507                    106932: {1,1,2,4,8,19}
%e A325507                   2732340: {1,1,2,3,6,11,30}
%e A325507                 236790060: {1,1,2,3,6,9,19,45}
%e A325507               19703562780: {1,1,2,3,5,8,15,26,67}
%e A325507             3419598096420: {1,1,2,3,5,8,13,21,41,97}
%e A325507           674127752953380: {1,1,2,3,5,7,12,18,31,56,139}
%e A325507        264134168649181380: {1,1,2,3,5,7,12,17,28,45,83,195}
%e A325507      95825592671995399620: {1,1,2,3,5,7,11,16,25,38,63,112,272}
%e A325507   67662122741507082338220: {1,1,2,3,5,7,11,16,24,35,55,87,160,373}
%t A325507 Table[Times@@Prime/@Length/@Split[Sort[Join@@IntegerPartitions[n]]],{n,0,15}]
%Y A325507 Cf. A001222, A003963, A006128, A007870, A056239, A066633, A087009, A112798, A215366, A302246, A325500, A325501, A325513.
%K A325507 nonn
%O A325507 0,2
%A A325507 _Gus Wiseman_, May 07 2019