cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325508 Product of primes indexed by the prime exponents of n!.

This page as a plain text file.
%I A325508 #8 Nov 20 2019 13:03:11
%S A325508 1,1,2,4,10,20,42,84,204,476,798,1596,3828,7656,12276,24180,36660,
%T A325508 73320,120840,241680,389424,785680,1294440,2588880,3848880,7147920,
%U A325508 11264760,15926040,26057304,52114608,74421648,148843296,187159392,340949280,527531760,926505360
%N A325508 Product of primes indexed by the prime exponents of n!.
%C A325508 The prime indices of a(n) are the signature of n!, which is row n of A115627.
%F A325508 a(n) = A181819(n!).
%F A325508 A001221(a(n)) = A071626(n).
%F A325508 A001222(a(n)) = A000720(n).
%F A325508 A056239(a(n)) = A022559(n).
%F A325508 A003963(a(n)) = A135291(n).
%F A325508 A061395(a(n)) = A011371(n).
%F A325508 A007814(a(n)) = A056171(n).
%F A325508 a(n) = A122111(A307035(n)). - _Antti Karttunen_, Nov 19 2019
%e A325508 We have 7! = 2^4 * 3^2 * 5^1 * 7^1, so a(7) = prime(4)*prime(2)*prime(1)*prime(1) = 84.
%e A325508 The sequence of terms together with their prime indices begins:
%e A325508           1: {}
%e A325508           1: {}
%e A325508           2: {1}
%e A325508           4: {1,1}
%e A325508          10: {1,3}
%e A325508          20: {1,1,3}
%e A325508          42: {1,2,4}
%e A325508          84: {1,1,2,4}
%e A325508         204: {1,1,2,7}
%e A325508         476: {1,1,4,7}
%e A325508         798: {1,2,4,8}
%e A325508        1596: {1,1,2,4,8}
%e A325508        3828: {1,1,2,5,10}
%e A325508        7656: {1,1,1,2,5,10}
%e A325508       12276: {1,1,2,2,5,11}
%e A325508       24180: {1,1,2,3,6,11}
%e A325508       36660: {1,1,2,3,6,15}
%e A325508       73320: {1,1,1,2,3,6,15}
%e A325508      120840: {1,1,1,2,3,8,16}
%e A325508      241680: {1,1,1,1,2,3,8,16}
%t A325508 Table[Times@@Prime/@Last/@If[(n!)==1,{},FactorInteger[n!]],{n,0,30}]
%Y A325508 Cf. A000142, A011371, A022559, A056171, A071626, A076934, A115627, A118914, A122111, A135291, A181819, A307035, A323014, A325272, A325273, A325276, A325509.
%K A325508 nonn
%O A325508 0,3
%A A325508 _Gus Wiseman_, May 08 2019