This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325508 #8 Nov 20 2019 13:03:11 %S A325508 1,1,2,4,10,20,42,84,204,476,798,1596,3828,7656,12276,24180,36660, %T A325508 73320,120840,241680,389424,785680,1294440,2588880,3848880,7147920, %U A325508 11264760,15926040,26057304,52114608,74421648,148843296,187159392,340949280,527531760,926505360 %N A325508 Product of primes indexed by the prime exponents of n!. %C A325508 The prime indices of a(n) are the signature of n!, which is row n of A115627. %F A325508 a(n) = A181819(n!). %F A325508 A001221(a(n)) = A071626(n). %F A325508 A001222(a(n)) = A000720(n). %F A325508 A056239(a(n)) = A022559(n). %F A325508 A003963(a(n)) = A135291(n). %F A325508 A061395(a(n)) = A011371(n). %F A325508 A007814(a(n)) = A056171(n). %F A325508 a(n) = A122111(A307035(n)). - _Antti Karttunen_, Nov 19 2019 %e A325508 We have 7! = 2^4 * 3^2 * 5^1 * 7^1, so a(7) = prime(4)*prime(2)*prime(1)*prime(1) = 84. %e A325508 The sequence of terms together with their prime indices begins: %e A325508 1: {} %e A325508 1: {} %e A325508 2: {1} %e A325508 4: {1,1} %e A325508 10: {1,3} %e A325508 20: {1,1,3} %e A325508 42: {1,2,4} %e A325508 84: {1,1,2,4} %e A325508 204: {1,1,2,7} %e A325508 476: {1,1,4,7} %e A325508 798: {1,2,4,8} %e A325508 1596: {1,1,2,4,8} %e A325508 3828: {1,1,2,5,10} %e A325508 7656: {1,1,1,2,5,10} %e A325508 12276: {1,1,2,2,5,11} %e A325508 24180: {1,1,2,3,6,11} %e A325508 36660: {1,1,2,3,6,15} %e A325508 73320: {1,1,1,2,3,6,15} %e A325508 120840: {1,1,1,2,3,8,16} %e A325508 241680: {1,1,1,1,2,3,8,16} %t A325508 Table[Times@@Prime/@Last/@If[(n!)==1,{},FactorInteger[n!]],{n,0,30}] %Y A325508 Cf. A000142, A011371, A022559, A056171, A071626, A076934, A115627, A118914, A122111, A135291, A181819, A307035, A323014, A325272, A325273, A325276, A325509. %K A325508 nonn %O A325508 0,3 %A A325508 _Gus Wiseman_, May 08 2019