cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325513 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all strict integer partitions of n.

This page as a plain text file.
%I A325513 #9 Feb 23 2024 17:24:36
%S A325513 1,2,2,8,8,32,144,432,2160,27000,582120,7623000,336936600,6740402760,
%T A325513 543454231320,57619849046760,4683793138766280,412882704970215480,
%U A325513 88171665744392750520,12780536107937124847320,2685589660883755945879560,942036670625665177379096280
%N A325513 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all strict integer partitions of n.
%C A325513 Also the Heinz number of row n of A015716 (with zeros removed).
%C A325513 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325513 Alois P. Heinz, <a href="/A325513/b325513.txt">Table of n, a(n) for n = 0..172</a>
%F A325513 a(n) = A181819(A003963(A325505(n))).
%F A325513 A056239(a(n)) = A015723(n).
%e A325513 The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with multiset union {1,1,2,2,3,4,5,6}, with multiplicities (2,2,1,1,1,1), so a(6) = prime(1)^4*prime(2)^2 = 144.
%e A325513 The sequence of terms together with their prime indices begins:
%e A325513                1: {}
%e A325513                2: {1}
%e A325513                2: {1}
%e A325513                8: {1,1,1}
%e A325513                8: {1,1,1}
%e A325513               32: {1,1,1,1,1}
%e A325513              144: {1,1,1,1,2,2}
%e A325513              432: {1,1,1,1,2,2,2}
%e A325513             2160: {1,1,1,1,2,2,2,3}
%e A325513            27000: {1,1,1,2,2,2,3,3,3}
%e A325513           582120: {1,1,1,2,2,2,3,4,4,5}
%e A325513          7623000: {1,1,1,2,2,3,3,3,4,5,5}
%e A325513        336936600: {1,1,1,2,2,3,3,4,5,5,6,7}
%e A325513       6740402760: {1,1,1,2,2,3,4,4,4,6,6,7,8}
%e A325513     543454231320: {1,1,1,2,2,3,4,4,5,6,7,8,9,10}
%e A325513   57619849046760: {1,1,1,2,2,3,4,5,5,6,8,9,10,11,12}
%p A325513 b:= proc(n, i) option remember;
%p A325513       `if`(n>(i*(i+1)/2), 0, `if`(n=0, [1, 0], b(n, i-1)+
%p A325513           (p-> p+[0, p[1]*x^i])(b(n-i, min(n-i, i-1)))))
%p A325513     end:
%p A325513 a:= n-> (p-> mul((c-> `if`(c=0, 1, ithprime(c)))(
%p A325513     coeff(p, x, i)), i=1..degree(p)))(b(n$2)[2]):
%p A325513 seq(a(n), n=0..21);  # _Alois P. Heinz_, Feb 23 2024
%t A325513 Table[Times@@Prime/@Length/@Split[Sort[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]]],{n,0,15}]
%Y A325513 Cf. A000009, A006128, A015716, A015723, A022629, A056239, A066633, A112798, A246867, A325500, A325504, A325506.
%K A325513 nonn
%O A325513 0,2
%A A325513 _Gus Wiseman_, May 07 2019