This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325535 #33 Aug 04 2025 19:44:06 %S A325535 0,0,1,1,2,2,5,5,8,11,16,19,28,35,48,60,79,99,131,161,205,256,324,397, %T A325535 498,609,755,921,1131,1372,1677,2022,2452,2952,3561,4260,5116,6102, %U A325535 7291,8667,10309,12210,14477,17087,20177,23752,27957,32804,38496,45049,52704 %N A325535 Number of inseparable partitions of n; see Comments. %C A325535 Definition: a partition is separable if there is an ordering of its parts in which no consecutive parts are identical; otherwise the partition is inseparable. %C A325535 A partition with k parts is inseparable if and only if there is a part whose multiplicity is greater than ceiling(k/2). - _Andrew Howroyd_, Jan 17 2024 %H A325535 Andrew Howroyd, <a href="/A325535/b325535.txt">Table of n, a(n) for n = 0..1000</a> %F A325535 a(n) = A000041(n) - A325534(n). %F A325535 a(n) = Sum_{k>=1} x^(2*k-1)*(1 + x - x^(k-1))/((1-x^(k+1))*Product_{j=1..k-1} (1 - x^j)). - _Andrew Howroyd_, Jan 17 2024 %e A325535 For n=5, the partition 1+2+2 is separable as 2+1+2, and 2+1+1+1 is inseparable. %e A325535 From _Gus Wiseman_, Jun 27 2020: (Start) %e A325535 The a(2) = 2 through a(9) = 11 inseparable partitions: %e A325535 11 111 22 2111 33 2221 44 333 %e A325535 1111 11111 222 4111 2222 3222 %e A325535 3111 31111 5111 6111 %e A325535 21111 211111 41111 22221 %e A325535 111111 1111111 221111 51111 %e A325535 311111 321111 %e A325535 2111111 411111 %e A325535 11111111 2211111 %e A325535 3111111 %e A325535 21111111 %e A325535 111111111 %e A325535 (End) %t A325535 u=Table[Length[Select[Map[Quotient[(1 + Length[#]), Max[Map[Length, Split[#]]]] &, %t A325535 IntegerPartitions[nn]], # > 1 &]], {nn, 50}] %t A325535 Table[PartitionsP[n] - u[[n]], {n, 1, Length[u]}] %t A325535 (* _Peter J. C. Moses_, May 07 2019 *) %t A325535 Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{___,x_,x_,___}]&]=={}&]],{n,10}] (* _Gus Wiseman_, Jun 27 2020 *) %o A325535 (PARI) seq(n) = {Vec(sum(k=1, (n+1)\2, x^(2*k-1)*(1 + x - x^(k-1))/((1-x^(k+1))*prod(j=1, k-1, 1 - x^j, 1 + O(x^(n-2*k+2)))), O(x*x^n)), -(n+1))} \\ _Andrew Howroyd_, Jan 17 2024 %Y A325535 The Heinz numbers of these partitions are given by A335448. %Y A325535 Strict partitions are counted by A000009 and are all separable. %Y A325535 Anti-run compositions are counted by A003242. %Y A325535 Anti-run patterns are counted by A005649. %Y A325535 Partitions whose differences are an anti-run are A238424. %Y A325535 Separable partitions are counted by A325534. %Y A325535 Anti-run compositions are ranked by A333489. %Y A325535 Anti-run permutations of prime indices are counted by A335452. %Y A325535 Cf. A000041, A106356, A238594, A261962, A292884, A332668, A333175. %K A325535 nonn,easy %O A325535 0,5 %A A325535 _Clark Kimberling_, May 08 2019 %E A325535 a(0)=0 prepended by _Andrew Howroyd_, Jan 31 2024