A325543 Width (number of leaves) of the rooted tree with Matula-Goebel number n!.
1, 1, 1, 2, 4, 5, 7, 9, 12, 14, 16, 17, 20, 22, 25, 27, 31, 33, 36, 39, 42, 45, 47, 49, 53, 55, 58, 61, 65, 67, 70, 71, 76, 78, 81, 84, 88, 91, 95, 98, 102, 104, 108, 111, 114, 117, 120, 122, 127, 131, 134, 137, 141, 145, 149, 151, 156, 160, 163, 165, 169, 172
Offset: 0
Keywords
Examples
Matula-Goebel trees of the first 9 factorial numbers are: 0!: o 1!: o 2!: (o) 3!: (o(o)) 4!: (ooo(o)) 5!: (ooo(o)((o))) 6!: (oooo(o)(o)((o))) 7!: (oooo(o)(o)((o))(oo)) 8!: (ooooooo(o)(o)((o))(oo)) The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
Crossrefs
Programs
-
Mathematica
mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]]; Table[mglv[n!],{n,0,100}]
Formula
For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).
Comments