cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325543 Width (number of leaves) of the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 9, 12, 14, 16, 17, 20, 22, 25, 27, 31, 33, 36, 39, 42, 45, 47, 49, 53, 55, 58, 61, 65, 67, 70, 71, 76, 78, 81, 84, 88, 91, 95, 98, 102, 104, 108, 111, 114, 117, 120, 122, 127, 131, 134, 137, 141, 145, 149, 151, 156, 160, 163, 165, 169, 172
Offset: 0

Views

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also the multiplicity of q(1) in the factorization of n! into factors q(i) = prime(i)/i. For example, the factorization of 7! is q(1)^9 * q(2)^3 * q(3) * q(4), so a(7) = 9.

Examples

			Matula-Goebel trees of the first 9 factorial numbers are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
		

Crossrefs

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[n!],{n,0,100}]

Formula

For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).