This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325544 #5 May 11 2019 18:31:19 %S A325544 1,1,2,4,6,9,12,15,18,22,26,30,34,38,42,47,51,55,60,64,69,74,79,84,89, %T A325544 95,100,106,111,116,122,127,132,138,143,149,155,160,165,171,177,182, %U A325544 188,193,199,206,212,218,224,230,237,243,249,254,261,268,274,280 %N A325544 Number of nodes in the rooted tree with Matula-Goebel number n!. %C A325544 Also one plus the number of factors in the factorization of n! into factors q(i) = prime(i)/i. For example, the q-factorization of 7! is 7! = q(1)^9 * q(2)^3 * q(3) * q(4), with 14 = a(7) - 1 factors. %F A325544 For n > 1, a(n) = 1 - n + Sum_{k = 1..n} A061775(k). %e A325544 Matula-Goebel trees of the first 9 factorial number are: %e A325544 0!: o %e A325544 1!: o %e A325544 2!: (o) %e A325544 3!: (o(o)) %e A325544 4!: (ooo(o)) %e A325544 5!: (ooo(o)((o))) %e A325544 6!: (oooo(o)(o)((o))) %e A325544 7!: (oooo(o)(o)((o))(oo)) %e A325544 8!: (ooooooo(o)(o)((o))(oo)) %e A325544 The number of nodes is the number of o's plus the number of brackets, giving {1,1,2,4,6,9,12,15,18}, as required. %t A325544 mgwt[n_]:=If[n==1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>mgwt[PrimePi[p]]*k]]]; %t A325544 Table[mgwt[n!],{n,0,100}] %Y A325544 Cf. A000081, A001222, A056239, A324922, A324923, A324924. %Y A325544 Matula-Goebel numbers: A007097, A061775, A109082, A109129, A196050, A317713. %Y A325544 Factorial numbers: A000142, A011371, A022559, A071626, A076934, A115627, A325272, A325273, A325276, A325508, A325543. %K A325544 nonn %O A325544 0,3 %A A325544 _Gus Wiseman_, May 09 2019