This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325550 #11 Aug 31 2019 22:26:15 %S A325550 1,2,2,4,5,7,11,16,18,41,86,118,273,465,731,1432,2791,4063,8429,14761, %T A325550 29465,58654,123799,227419,453229,861909,1697645,3192807,6315007, %U A325550 11718879,22795272,42965245,83615516,156215020,306561088,587300503,1140650287,2203107028 %N A325550 Number of necklace compositions of n with distinct multiplicities. %C A325550 A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. %H A325550 Andrew Howroyd, <a href="/A325550/b325550.txt">Table of n, a(n) for n = 1..100</a> %F A325550 a(n) = Sum_{d|n} phi(d)*(Sum_{k=1..n/d} A242887(n/d, k)/k)/d. - _Andrew Howroyd_, Aug 31 2019 %e A325550 The a(1) = 1 through a(8) = 16 necklace compositions: %e A325550 (1) (2) (3) (4) (5) (6) (7) (8) %e A325550 (11) (111) (22) (113) (33) (115) (44) %e A325550 (112) (122) (114) (133) (116) %e A325550 (1111) (1112) (222) (223) (224) %e A325550 (11111) (1113) (1114) (233) %e A325550 (11112) (1222) (1115) %e A325550 (111111) (11113) (2222) %e A325550 (11122) (11114) %e A325550 (11212) (11222) %e A325550 (111112) (12122) %e A325550 (1111111) (111113) %e A325550 (111122) %e A325550 (111212) %e A325550 (112112) %e A325550 (1111112) %e A325550 (11111111) %t A325550 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A325550 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Length/@Split[Sort[#]]&]],{n,15}] %o A325550 (PARI) %o A325550 b(n)={((r,k,b,w)->if(!k||!r, if(r,0,(w-1)!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<<m), w+m)/m!))))(n,n,1,0)} %o A325550 a(n)={sumdiv(n, d, eulerphi(d)*b(n/d)/d)} \\ _Andrew Howroyd_, Aug 31 2019 %Y A325550 Cf. A000079, A000740, A008965, A059966, A098504, A098859, A242882, A242887, A325549, A325554. %K A325550 nonn %O A325550 1,2 %A A325550 _Gus Wiseman_, May 10 2019 %E A325550 Terms a(26) and beyond from _Andrew Howroyd_, Aug 31 2019