This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325551 #6 May 11 2019 18:31:53 %S A325551 1,1,3,6,11,8,26,50,79,121,195,265,478,742,1269,1914,2929,4462,6825, %T A325551 10309,16324,24633,37213,56828,84482 %N A325551 Number of compositions of n with distinct circular differences. %C A325551 A composition of n is a finite sequence of positive integers summing to n. %C A325551 The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2), which are distinct, so (1,2,1,3) is counted under a(7). %H A325551 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325551 The a(1) = 1 through a(7) = 26 compositions: %e A325551 (1) (2) (3) (4) (5) (6) (7) %e A325551 (12) (13) (14) (15) (16) %e A325551 (21) (31) (23) (24) (25) %e A325551 (112) (32) (42) (34) %e A325551 (121) (41) (51) (43) %e A325551 (211) (113) (114) (52) %e A325551 (122) (141) (61) %e A325551 (131) (411) (115) %e A325551 (212) (124) %e A325551 (221) (133) %e A325551 (311) (142) %e A325551 (151) %e A325551 (214) %e A325551 (223) %e A325551 (232) %e A325551 (241) %e A325551 (313) %e A325551 (322) %e A325551 (331) %e A325551 (412) %e A325551 (421) %e A325551 (511) %e A325551 (1213) %e A325551 (1312) %e A325551 (2131) %e A325551 (3121) %t A325551 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Differences[Append[#,First[#]]]&]],{n,15}] %Y A325551 Cf. A000079, A000740, A008965, A242882, A325545, A325549, A325553, A325558, A325589, A325591. %K A325551 nonn,more %O A325551 1,3 %A A325551 _Gus Wiseman_, May 10 2019