This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325557 #12 Aug 24 2019 11:50:55 %S A325557 1,1,2,4,6,8,13,12,20,24,25,29,49,40,50,64,86,80,105,102,164,175,186, %T A325557 208,325,316,382,476,624,660,814,961,1331,1500,1739,2140,2877,3274, %U A325557 3939,4901,6345,7448,9054,11157,14315,17181,20769,25843,32947,39639,48257,60075 %N A325557 Number of compositions of n with equal differences up to sign. %C A325557 A composition of n is a finite sequence of positive integers summing to n. %C A325557 The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1). %H A325557 Andrew Howroyd, <a href="/A325557/b325557.txt">Table of n, a(n) for n = 0..200</a> %H A325557 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325557 The a(1) = 1 through a(8) = 20 compositions: %e A325557 (1) (2) (3) (4) (5) (6) (7) (8) %e A325557 (11) (12) (13) (14) (15) (16) (17) %e A325557 (21) (22) (23) (24) (25) (26) %e A325557 (111) (31) (32) (33) (34) (35) %e A325557 (121) (41) (42) (43) (44) %e A325557 (1111) (131) (51) (52) (53) %e A325557 (212) (123) (61) (62) %e A325557 (11111) (141) (151) (71) %e A325557 (222) (232) (161) %e A325557 (321) (313) (242) %e A325557 (1212) (12121) (323) %e A325557 (2121) (1111111) (1232) %e A325557 (111111) (1313) %e A325557 (2123) %e A325557 (2222) %e A325557 (2321) %e A325557 (3131) %e A325557 (3212) %e A325557 (21212) %e A325557 (11111111) %t A325557 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Abs[Differences[#]]&]],{n,0,15}] %o A325557 (PARI) %o A325557 step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )} %o A325557 w(n,s)={my(R=matid(n), t=0); while(R, R=step(R,n,s); t+=vecsum(R[n,])); t} %o A325557 a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, w(n,s))} \\ _Andrew Howroyd_, Aug 22 2019 %Y A325557 Cf. A000079, A047966, A049988, A070211, A098504, A173258, A175342, A325545, A325546, A325547, A325548, A325552, A325558. %K A325557 nonn %O A325557 0,3 %A A325557 _Gus Wiseman_, May 11 2019 %E A325557 a(26)-a(42) from _Lars Blomberg_, May 30 2019 %E A325557 Terms a(43) and beyond from _Andrew Howroyd_, Aug 22 2019