This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325590 #15 Aug 23 2019 13:36:13 %S A325590 0,0,1,0,1,1,1,1,2,1,2,2,2,2,4,3,3,4,4,5,7,6,7,10,10,11,15,16,18,23, %T A325590 25,32,38,43,53,64,73,89,108,131,153,188,223,272,329,395,475,583,697, %U A325590 848,1027,1247,1506,1837,2223,2708,3282,3993,4848,5913,7175,8745,10640 %N A325590 Number of necklace compositions of n with circular differences all equal to 1 or -1. %C A325590 A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. %C A325590 The circular differences of a sequence c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2). %C A325590 Up to rotation, a(n) is the number of ways to arrange positive integers summing to n in a circle such that adjacent parts differ by 1 or -1. %H A325590 Andrew Howroyd, <a href="/A325590/b325590.txt">Table of n, a(n) for n = 1..200</a> %e A325590 The first 16 terms count the following compositions: %e A325590 3: (12) %e A325590 5: (23) %e A325590 6: (1212) %e A325590 7: (34) %e A325590 8: (1232) %e A325590 9: (45) %e A325590 9: (121212) %e A325590 10: (2323) %e A325590 11: (56) %e A325590 11: (121232) %e A325590 12: (2343) %e A325590 12: (12121212) %e A325590 13: (67) %e A325590 13: (123232) %e A325590 14: (3434) %e A325590 14: (12121232) %e A325590 15: (78) %e A325590 15: (123432) %e A325590 15: (232323) %e A325590 15: (1212121212) %e A325590 16: (3454) %e A325590 16: (12321232) %e A325590 16: (12123232) %e A325590 The a(21) = 7 necklace compositions: %e A325590 (10,11) %e A325590 (2,3,4,5,4,3) %e A325590 (3,4,3,4,3,4) %e A325590 (1,2,1,2,1,2,3,4,3,2) %e A325590 (1,2,3,2,1,2,3,2,3,2) %e A325590 (1,2,1,2,3,2,3,2,3,2) %e A325590 (1,2,1,2,1,2,1,2,1,2,1,2,1,2) %t A325590 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A325590 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&(SameQ[1,##]&@@Abs[Differences[Append[#,First[#]]]])&]],{n,15}] %o A325590 (PARI) %o A325590 step(R,n,s)={matrix(n,n,i,j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )} %o A325590 a(n)={sum(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)==1), t=0, m=1); while(R, R=step(R,n,1); m++; t+=sumdiv(n, d, R[d,k]*d*eulerphi(n/d))/m ); t/n)} \\ _Andrew Howroyd_, Aug 23 2019 %Y A325590 Cf. A000079, A000740, A008965, A034297, A173258, A325556, A325588, A325589, A325591. %K A325590 nonn %O A325590 1,9 %A A325590 _Gus Wiseman_, May 12 2019 %E A325590 a(26)-a(40) from _Lars Blomberg_, Jun 11 2019 %E A325590 Terms a(41) and beyond from _Andrew Howroyd_, Aug 23 2019