cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325592 Triangle read by rows where T(n,k) is the number of length-k knapsack partitions of n.

This page as a plain text file.
%I A325592 #9 May 11 2021 17:31:29
%S A325592 1,0,1,0,1,1,0,1,1,1,0,1,2,0,1,0,1,2,2,0,1,0,1,3,2,0,0,1,0,1,3,4,2,0,
%T A325592 0,1,0,1,4,3,3,0,0,0,1,0,1,4,7,2,2,0,0,0,1,0,1,5,6,4,2,0,0,0,0,1,0,1,
%U A325592 5,10,6,4,2,0,0,0,0,1,0,1,6,9,5,1,2,0,0,0,0,0,1
%N A325592 Triangle read by rows where T(n,k) is the number of length-k knapsack partitions of n.
%C A325592 A knapsack partition of n is an integer partition of n whose distinct submultisets all have different sums.
%H A325592 Fausto A. C. Cariboni, <a href="/A325592/b325592.txt">Table of n, a(n) for n = 0..10010</a>
%e A325592 Triangle begins:
%e A325592   1
%e A325592   0  1
%e A325592   0  1  1
%e A325592   0  1  1  1
%e A325592   0  1  2  0  1
%e A325592   0  1  2  2  0  1
%e A325592   0  1  3  2  0  0  1
%e A325592   0  1  3  4  2  0  0  1
%e A325592   0  1  4  3  3  0  0  0  1
%e A325592   0  1  4  7  2  2  0  0  0  1
%e A325592   0  1  5  6  4  2  0  0  0  0  1
%e A325592   0  1  5 10  6  4  2  0  0  0  0  1
%e A325592   0  1  6  9  5  1  2  0  0  0  0  0  1
%e A325592   0  1  6 14 10  5  2  2  0  0  0  0  0  1
%e A325592   0  1  7 13 11  3  3  2  0  0  0  0  0  0  1
%e A325592   0  1  7 19 16  7  3  2  2  0  0  0  0  0  0  1
%e A325592 Row n = 12 counts the following partitions (A = 10, B = 11, C = 12):
%e A325592    (C)  (66)   (444)   (3333)  (81111)  (222222)  (111111111111)
%e A325592         (75)   (543)   (5511)           (711111)
%e A325592         (84)   (552)   (7221)
%e A325592         (93)   (732)   (7311)
%e A325592         (A2)   (741)   (9111)
%e A325592         (B1)   (822)
%e A325592                (831)
%e A325592                (921)
%e A325592                (A11)
%t A325592 Table[Length[Select[IntegerPartitions[n,{k}],UnsameQ@@Total/@Union[Subsets[#]]&]],{n,0,15},{k,0,n}]
%Y A325592 Row sums are A000041.
%Y A325592 Column k = 2 is A004526.
%Y A325592 Column k = 3 is A325690.
%Y A325592 Cf. A002219, A006827, A108917, A143823, A169942, A275972, A276024, A292886, A321143, A325676, A325687.
%K A325592 nonn,tabl
%O A325592 0,13
%A A325592 _Gus Wiseman_, May 15 2019