This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325592 #9 May 11 2021 17:31:29 %S A325592 1,0,1,0,1,1,0,1,1,1,0,1,2,0,1,0,1,2,2,0,1,0,1,3,2,0,0,1,0,1,3,4,2,0, %T A325592 0,1,0,1,4,3,3,0,0,0,1,0,1,4,7,2,2,0,0,0,1,0,1,5,6,4,2,0,0,0,0,1,0,1, %U A325592 5,10,6,4,2,0,0,0,0,1,0,1,6,9,5,1,2,0,0,0,0,0,1 %N A325592 Triangle read by rows where T(n,k) is the number of length-k knapsack partitions of n. %C A325592 A knapsack partition of n is an integer partition of n whose distinct submultisets all have different sums. %H A325592 Fausto A. C. Cariboni, <a href="/A325592/b325592.txt">Table of n, a(n) for n = 0..10010</a> %e A325592 Triangle begins: %e A325592 1 %e A325592 0 1 %e A325592 0 1 1 %e A325592 0 1 1 1 %e A325592 0 1 2 0 1 %e A325592 0 1 2 2 0 1 %e A325592 0 1 3 2 0 0 1 %e A325592 0 1 3 4 2 0 0 1 %e A325592 0 1 4 3 3 0 0 0 1 %e A325592 0 1 4 7 2 2 0 0 0 1 %e A325592 0 1 5 6 4 2 0 0 0 0 1 %e A325592 0 1 5 10 6 4 2 0 0 0 0 1 %e A325592 0 1 6 9 5 1 2 0 0 0 0 0 1 %e A325592 0 1 6 14 10 5 2 2 0 0 0 0 0 1 %e A325592 0 1 7 13 11 3 3 2 0 0 0 0 0 0 1 %e A325592 0 1 7 19 16 7 3 2 2 0 0 0 0 0 0 1 %e A325592 Row n = 12 counts the following partitions (A = 10, B = 11, C = 12): %e A325592 (C) (66) (444) (3333) (81111) (222222) (111111111111) %e A325592 (75) (543) (5511) (711111) %e A325592 (84) (552) (7221) %e A325592 (93) (732) (7311) %e A325592 (A2) (741) (9111) %e A325592 (B1) (822) %e A325592 (831) %e A325592 (921) %e A325592 (A11) %t A325592 Table[Length[Select[IntegerPartitions[n,{k}],UnsameQ@@Total/@Union[Subsets[#]]&]],{n,0,15},{k,0,n}] %Y A325592 Row sums are A000041. %Y A325592 Column k = 2 is A004526. %Y A325592 Column k = 3 is A325690. %Y A325592 Cf. A002219, A006827, A108917, A143823, A169942, A275972, A276024, A292886, A321143, A325676, A325687. %K A325592 nonn,tabl %O A325592 0,13 %A A325592 _Gus Wiseman_, May 15 2019