This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325608 #6 May 13 2019 01:09:40 %S A325608 147,245,294,357,490,511,539,588,595,637,681,714,735,845,847,853,867, %T A325608 903,980,1022,1029,1043,1078,1083,1135,1176,1183,1190,1239,1241,1267, %U A325608 1274,1309,1362,1421,1428,1445,1470,1505,1519,1547,1553,1563,1617,1631,1690 %N A325608 Numbers whose factorization into factors prime(i)/i does not have weakly decreasing nonzero multiplicities. %C A325608 Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example, 147 = q(1)^5 q(2) q(4)^2 has multiplicities (5,1,2), which are not weakly decreasing, so 147 belongs to the sequence. %t A325608 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; %t A325608 Select[Range[1000],!GreaterEqual@@Length/@Split[difac[#]]&] %Y A325608 Cf. A001222, A056239, A112798, A118914. %Y A325608 Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713, A324935. %Y A325608 q-factorization: A324922, A324923, A324924, A324931, A325613, A325614, A325615, A325660, A325662. %K A325608 nonn %O A325608 1,1 %A A325608 _Gus Wiseman_, May 12 2019