This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325609 #10 May 13 2019 01:09:47 %S A325609 1,2,1,4,1,5,2,1,7,3,1,9,3,1,1,12,3,1,1,14,5,1,1,16,6,2,1,17,7,3,1,1, %T A325609 20,8,3,1,1,22,9,3,1,1,1,25,9,3,2,1,1,27,11,4,2,1,1,31,11,4,2,1,1,33, %U A325609 11,4,3,1,1,1,36,13,4,3,1,1,1,39,13,4,3,1,1,1,1 %N A325609 Unsorted q-signature of n!. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the factorization of n! into factors q(i) = prime(i)/i. %C A325609 Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example: %C A325609 11 = q(1) q(2) q(3) q(5) %C A325609 50 = q(1)^3 q(2)^2 q(3)^2 %C A325609 360 = q(1)^6 q(2)^3 q(3) %C A325609 Row n is the sequence of nonzero exponents in the q-factorization of n!. %C A325609 Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n!. %e A325609 We have 10! = q(1)^16 q(2)^6 q(3)^2 q(4), so row n = 10 is (16,6,2,1). %e A325609 Triangle begins: %e A325609 {} %e A325609 1 %e A325609 2 1 %e A325609 4 1 %e A325609 5 2 1 %e A325609 7 3 1 %e A325609 9 3 1 1 %e A325609 12 3 1 1 %e A325609 14 5 1 1 %e A325609 16 6 2 1 %e A325609 17 7 3 1 1 %e A325609 20 8 3 1 1 %e A325609 22 9 3 1 1 1 %e A325609 25 9 3 2 1 1 %e A325609 27 11 4 2 1 1 %e A325609 31 11 4 2 1 1 %e A325609 33 11 4 3 1 1 1 %e A325609 36 13 4 3 1 1 1 %e A325609 39 13 4 3 1 1 1 1 %e A325609 42 14 5 3 1 1 1 1 %t A325609 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; %t A325609 Table[Length/@Split[difac[n!]],{n,20}] %Y A325609 Row lengths are A000720. %Y A325609 Row sums are A325544(n) - 1. %Y A325609 Column k = 1 is A325543. %Y A325609 Cf. A056239, A067255, A112798, A118914, A124010. %Y A325609 Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713, A324935. %Y A325609 Factorial numbers: A000142, A011371, A022559, A071626, A115627, A325276. %Y A325609 q-factorization: A324922, A324923, A324924, A325614, A325615, A325660. %K A325609 nonn,tabf %O A325609 1,2 %A A325609 _Gus Wiseman_, May 12 2019