A325613 Full q-signature of n. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the q-factorization of n.
1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 3, 1, 2, 1, 0, 0, 0, 1, 3, 0, 0, 1, 2, 2, 1, 4, 2, 0, 0, 1, 0, 0, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 3, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 4, 1, 2, 2, 2, 3, 1, 0, 0
Offset: 1
Examples
Triangle begins: {} 1 1 1 2 1 1 1 2 1 2 0 0 1 3 2 2 2 1 1 1 1 1 0 1 3 1 2 1 0 0 0 1 3 0 0 1 2 2 1 4 2 0 0 1 0 0 1 3 2 3 0 0 0 0 0 0 1 3 1 1
Crossrefs
Programs
-
Mathematica
difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; qsig[n_]:=If[n==1,{},With[{ms=difac[n]},Table[Count[ms,i],{i,Max@@ms}]]]; Table[qsig[n],{n,30}]
Comments